
GNU Pilot SDK Table HOWTO

Page 1 of 10 March 1998

PALMPILOT TABLES HOWTO V1.0

Copyright 1998 A.G. Howlett, howlett@iosphere.net
Pilot, PalmPilot, PalmOS and Palm Computing are trademarks of Palm Computing and 3Com Corporation
This information may not be sold for profit.

1. Administration

1.1 DISCLAIMER

This tutorial will explain how I use tables. It will present a very simple application that uses a table. The method
presented in this memo is not the only way, may not be the best way, and may not even be a good way. However
people have been asking questions about how to implement simple PalmPilot table resources, so I offer this
HOWTO.

I haven’t done everything with tables, so this HOWTO will not explain everything about a table. In fact I have done
very little with tables, so this HOWTO explains very little. This HOWTO gives the recreational programmer a
starting point. It is expected that after mastering the techniques described here, the reader will find better and more
sophisticated ways to manipulate tables. If you improve on these methods, please send me a note describing your
techniques and I will immortalize your achievement in an updated version of this HOWTO.

1.2 PLATFORM

This memo will focus on the GNU SDK. The techniques described here may be adaptable to other SDKs. All
references to PalmOS API functions, events, data structures, et cetera refer to the PalmOS 2 manuals. If it makes a
difference, I use the GNU SDK on Win95, debug on Copilot using a PalmOS 1.0 ROM, and carry a Pilot 1000 with
a PalmPilot Professional ROM upgrade.

The HOWTO was written in MS Word 97 and (tediously) converted to HTML for cross-platform distribution.

1.3 PREREQUISITES

Readers should master the techniques discussed in the GNU Pilot SDK Tutorial before advancing to tables. The
example application in this HOWTO conforms to and extends the simple application structure discussed in the
tutorial. This HOWTO will explain line-by-line all the code in the example which is directly relevant to the table
resource. This HOWTO will not explain the simple application code and resources discussed in the tutorial. For
instance, this HOWTO will not explain the PilotMain, EventLoop, and FormEventHandler functions, nor will it
explain the resource definitions used in the example. The reader should be able to read and understand these source
code elements without assistance.

1.4 THANK YOU

Most of the procedure explained here has been adapted from the Memopad.c source code copyright
PalmComputing. Thanks PalmComputing, and special thanks to DevSupport for the time they've spent promoting
recreational programming of the Pilot.

1.5 UPDATES

The most recent version of this HOWTO will be available at my website <<www.iosphere.net/~howlett>>. If my
site moves, then check at Roadcoders or query your favorite search engine.

GNU Pilot SDK Table HOWTO

Page 2 of 10 March 1998

2. Organize your data

2.1 WHAT IS A TABLE?

A table is a way of organizing data on the screen. For instance the Address List (press the Address hardware button
on your Pilot) presents your address data using a table of three columns and eleven rows. An intersection of a
column and a row is called a cell. Cells may also be called "table items". According to the PalmOS manual, part 1
page 114, the cells may contain other UI objects such as fields and buttons. This HOWTO is limited to cells
containing text.

The PalmOS manual states that the table may be larger than the LCD panel. The table implementation described in
this HOWTO applies to tables that fit on the LCD panel.

When you tap in one of the table’s cells PalmOS enters a tblSelectEvent on the event queue. The tblSelectEvent data
structure includes the row and column of the cell that was tapped. This allows you to execute different actions for
each column, row, and/or cell. In this way the table can be thought of as a grid of buttons.

2.2 ORGANIZING THE DATA

Before writing any code, you must plan the presentation of your data. I use pencil and paper and draw what I expect
the screen to look like. Graph paper is helpful. The table below illustrates another planning tool I often use.

Pixel width
Data Source Character Width

Required Assigned
Comments

Field One

Field Two

Field Three

…

Total: about 32 160

In my tables, each row is associated with a record of information. The record has several fields. The problem is to
figure out which fields will be displayed, how many characters of each field will be displayed, the number of pixels
required to display the entire field and the pixel width assigned to the field.

Some things to remember when planning your column widths:

Ø In standard font characters average about five pixels wide. So pixel width required is typically 5 times the
character width. This means you’ve got about 32 characters width on the screen.

Ø If your field is long, then you can truncate it and append an ellipsis (ellipsis are the three dots “… ”). However
there must be meaningful data in front of the ellipsis or the screen space is wasted.

Ø Use the minimum number of characters. Use the symbol character sets where appropriate. For instance, if a note
is attached, use the note symbol instead of the four characters "Note". Be creative.

Next is to figure out the height of the table. The PalmPilot has 160 pixel-rows. If you want the form to have a title
bar, subtract 15 pixel-rows. Many people want on-screen buttons or a message area at the bottom of the LCD panel
– subtract another 15 pixel-rows. Now you’re down to 130. Standard and bold font are both 11 pixels high, so you
can fit 11 rows in the table. Some applications may require column headings. If so, subtract a row for that.

GNU Pilot SDK Table HOWTO

Page 3 of 10 March 1998

2.3 DEFINE THE RESOURCE

If you have organized your data properly, then you will be able to define the table UI object. From PilRC documentation the
Table prototype is

TABLE ID <Id.n> AT (<Left.p> <Top.p> <Width.p> <Height.p>)
 ROWS <NumRows.n> COLUMNS <NumCols.n>
 COLUMNWIDTHS <Col1Width.n> <Col2Width.n.>...

2.4 EXAMPLE

For our example, consider an application that lists the data bases on the Pilot memory card. We will call the
application “File Manager”. We want the list to show the dbID, whether it’s a Resource database or a “data”
database, the Type of database, the CreatorID, and the database Name. Furthermore, if we tap on one of the
databases in the list, we want to see more details such as the number of records in the database, the total length and
the data length, and the database attributes.

We decide to use a table. Each row of the table will show information for a different database. The 160 pixel-width
will be divided as follows:

Pixel width
Data Character Width

Required Assigned
Comments

dbID 3 15 15

Resource/Data 1 6 10 R for resource, D for data.
Bold font 6 pixels wide.

Type 4 20 30

CreatorID 4 20 30

Name variable variable 75

Suppose we need at least
six characters to identify a
database name, plus room
for the ellipsis.

Our form will need a title bar, and we want some room at the bottom of the form to display other information and maybe
controls. So we have 130 pixel-height to work with, which gives us eleven rows in the table (using standard and bold fonts).

We now have all the information we need to define the table resource and it's form.

FORM formID_FileList 0 0 160 160
MENUID menuID_MainMenu
USABLE
NOFRAME
BEGIN
 TITLE "File Manager 1.0"
 TABLE tableID_FileList AT (0 20 160 140) ROWS 11 COLUMNS 5 COLUMNWIDTHS 15 10 30 30 75
END

3. Drawing the Table

3.1 GENERAL

In the SDK Tutorial drawing the form was simple. We defined our UI objects and used the FrmDrawForm API call.
If your form contains a table, then the drawing requirements are more complicated. We must create a custom "draw
form" function for the form containing the table. I usually take the name of the form and suffix "DrawForm" to it.
The DrawForm function must do at least six things:

GNU Pilot SDK Table HOWTO

Page 4 of 10 March 1998

1. set rows usable/non-usable
2. mark rows invalid
3. set columns usable/non-usable
4. set the style for each cell
5. set the draw procedure for each cell
6. call FrmDrawForm

3.2 SET ROW USABLE

PalmOS displays only rows that are usable. The number of usable rows may change while your application is
running. For instance, if you have twenty items to list and only eleven row in your table, then your application will
initially display the first eleven items. So initially all eleven rows are usable. Then the user presses the page down
key and your application displays the final nine items. So the top nine rows are usable (rows zero to eight) and the
bottom two rows are non-usable (rows nine and ten).

You set rows usable/non-usable with the TblSetRowUsable API call. Its prototype is:

void TblSetRowUsable (TablePtr table, Word row, Boolean usable)

Row is zero based (first row is row zero) and usable is 1 for usable, 0 for non-usable.

3.3 MARK ROW INVALID

If you set the row usable, then PalmOS will draw that row. But if you need to redraw the table later on, Palm OS
will only redraw rows that are marked "invalid". "Invalid" means that the data source has been changed implying
that the data displayed by the table in that row is no longer the same as the data source. You mark a row as "invalid"
using the TblMarkRowInvalid API call. Its prototype is:

void TblMarkRowInvalid (TablePtr table, Word row)

3.4 SET COLUMN USABLE

In the same way that PalmOS only displays "usable" rows, PalmOS only displays "usable" columns. So you can turn
entire columns off if you want to. Consider a sophisticated table application where the user gets to choose which
data will be represented in each column. The user may choose to turn a column off. In my applications all the
columns are always usable. The call is TblSetColumnUsable and its prototype is

void TblSetColumnUsable (TablePtr table, Word row, Boolean usable)

3.5 SET ITEM STYLE

The DrawForm function must specify the style of each usable cell. Styles are defined in "table.h". I always set the
item style to "customTableItem". This forces PalmOS to use my custom cell draw procedure. TblSetItemStyle must
be called for every usable cell. Its prototype is:

void TblSetItemStyle (TablePtr table, Word row, Word column,
 TableItemStyleType type)

3.6 SET CUSTOM DRAW PROCEDURE

If the item style is "customTableItem" then PalmOS must use the application defined custom cell drawing
procedure. I always set the item style to "customTableItem" and my custom cell drawing procedures will be
explained later. You have to define the custom cell drawing procedure for each column. The prototype is:

void TblSetCustomDrawProcedure(TablePtr table, Word column,
 VoidPtr drawCallback)

GNU Pilot SDK Table HOWTO

Page 5 of 10 March 1998

3.7 DRAW FORM

After all the table parameters have been set, our DrawForm procedure uses the FrmDrawForm API call to draw all
UI objects, including the table.

3.8 EXAMPLE

Our form is called "File List" so we will call our custom draw form function "FileListDrawForm". First it will erase
the window. Then it gets pointers to the form and to the table.

static void FileListDrawForm(void)
{
 FormPtr frm;
 TablePtr tableP;
 UInt dbIndex;
 Word row, numRows;
 int currFont;
 char string[30];

 WinEraseWindow();

 frm = FrmGetActiveForm();
 tableP = FrmGetObjectPtr (frm, FrmGetObjectIndex (frm, tableID_FileList));

NumDatabases is a global variable containing the number of databases on card zero. If there are no databases on
card 0, then return from the function now.

if (NumDatabases == 0)
{

FrmDrawForm (frm);
return;

}

Now we get to the guts of the function. TopRow is a global which is equal to the dbIndex of the database which will
be drawn in the top row (row zero) of the table. Get the number of rows in the table using TblGetNumberOfRows.
Stuff the value of TopRow into the RowData storage location that is part of the table structure (I'll explain why we
have to do this in section 4).

dbIndex = TopRow;
numRows = TblGetNumberOfRows (tableP);
TblSetRowData (tableP, 1, TopRow);

GNU Pilot SDK Table HOWTO

Page 6 of 10 March 1998

Next we loop through all the rows and set them usable/non-usable, and if usable set them invalid and set the item
style. We have to set the values for all the rows, but we may not have enough databases on the card to populate the
entire table. If dbIndex is less than NumDatabases, then we have an entry for that row so we set the row usable,
mark the row invalid, and set the item style of every cell in the row to customTableItem. If dbIndex is not less than
NumDatabases, then we set the row non-usable.

for (row = 0; row < numRows; row++, dbIndex++)
{

if (dbIndex < NumDatabases)
{

TblSetRowUsable (tableP, row, true);
TblMarkRowInvalid (tableP, row);
TblSetItemStyle (tableP, row, 0, customTableItem);
TblSetItemStyle (tableP, row, 1, customTableItem);
TblSetItemStyle (tableP, row, 2, customTableItem);
TblSetItemStyle (tableP, row, 3, customTableItem);
TblSetItemStyle (tableP, row, 4, customTableItem);

}
else
{

TblSetRowUsable (tableP, row, false);
}

}

We have to set the custom cell draw procedure for each column. We decide now that the name of the custom cell
draw function will be "FileListDrawCell". We also have to set all the columns to usable. When that's done we can
call FrmDrawForm.

TblSetCustomDrawProcedure (tableP, 0, FileListDrawCell);
TblSetCustomDrawProcedure (tableP, 1, FileListDrawCell);
TblSetCustomDrawProcedure (tableP, 2, FileListDrawCell);
TblSetCustomDrawProcedure (tableP, 3, FileListDrawCell);
TblSetCustomDrawProcedure (tableP, 4, FileListDrawCell);
TblSetColumnUsable (tableP, 0, true);
TblSetColumnUsable (tableP, 1, true);
TblSetColumnUsable (tableP, 2, true);
TblSetColumnUsable (tableP, 3, true);
TblSetColumnUsable (tableP, 4, true);
FrmDrawForm (frm);

When using a scrollable table it's a good idea to indicate the total number of rows in the data source. You can do this
in several ways. Some apps use FrmCopyTitle to indicate the number of records right in the form title. This app uses
WinDrawChars to print a string at the bottom of the LCD panel. Because we use the WinDrawChars API call, we
had to include the WinEraseWindow call at the beginning of the function.

StrIToA (string, NumDatabases);
StrCat (string, " databases on card 0");
WinDrawChars (string, StrLen(string), 0, 149);

}

4. Custom Cell Draw Procedure

4.1 GENERAL

When PalmOS draws the table it calls the custom cell draw procedure. Your application does not call this procedure
- PalmOS calls this procedure. This statement has an important implication - none of the global variables in your
application will be accessible to the custom cell draw procedure. For instance, in our example the TopRow global
variable will not be accessible to the custom cell draw procedure. That's why we stuffed it into the row data area
using TblSetRowData when we drew the form. Any data that you need to pass from the application to the custom
cell draw procedure must be communicated using the row data area.

GNU Pilot SDK Table HOWTO

Page 7 of 10 March 1998

When PalmOS calls the custom cell draw procedure PalmOS passes the table pointer of the relevant table, the row
and column of the cell to be drawn, and a Rectangle structure which describes the location and size of the cell. If
you have multiple tables in your application, it is conceivable but not recommendable that you could use one custom
cell draw procedure and switch on the table pointer to implement different functions for different tables. It would be
way easier to write different custom cell draw procedures for different tables.

Your cell draw procedure processes the row and column arguments to determine how to populate the cell. Exactly
how the row and column arguments determine the contents of the cell depends on how you choose to organize your
data. PalmOS leaves a lot of room for programmer imagination.

4.2 BEWARE THE BOOLEAN!

The data to be displayed in a cell often requires more pixels than the pixel width of the cell. Memopad.c and my first
custom cell draw procedures used the FntCharsInWidth function call to trim strings such that they would fit in the
cell. The last argument of FntCharsInWidth is a boolean. Beware the boolean when using GCC! I compiled many
PRC files that worked fine on Copilot but resulted in Fatal Errors on PalmPilot. These are obviously word alignment
errors. Fooling around with booleans, for instance declaring a second boolean variable, often removed the fatal
error. Later on I invented an alternative to the FntCharsInWidth function in order to avoid the boolean. The
alternative function is:

/***
 *
 * Trim String To Fit Cell
 *
 * I don't want to use the FntCharsInWidth function for two reasons:
 *
 * 1. The use of a boolean causes strange problems with GCC
 * 2. I want ellipsis ("...") to appear at the end of truncated strings
 *
 **/

void TrimStringToFitCell (char *string, int cell_width_pixels)
{

if (FntCharsWidth(string, StrLen(string)) > cell_width_pixels)
{

cell_width_pixels -= 6;
do
{

string[StrLen(string) - 1] = 0;
} while (FntCharsWidth(string, StrLen(string)) > cell_width_pixels);

StrCat(string, "...");
}

}

4.3 EXAMPLE

The custom draw cell procedure will be called FileListDrawCell.

static void FileListDrawCell (VoidPtr tableP, Word row, Word column,
 RectanglePtr bounds)
{

DWord dbID;
short font;
char DBName[32], *display_string, string[5];
short TextLen;
FontID currFont;
unsigned long type, creator, RowTop;
unsigned short attributes;

GNU Pilot SDK Table HOWTO

Page 8 of 10 March 1998

We want to get the database id of database to be displayed in this row. To figure this out, we need to know the
dbIndex of the row. From the Form Draw routine we know that the dbIndex is equal to TopRow plus row. But first
we have to get the value from where we stashed it – that is, out of the row data area of row 1. I call TopRow
RowTop within the custom cell draw procedure to remind me that it isn’t really the global variable.

RowTop = TblGetRowData(tableP, 1);
dbID = DmGetDatabase (0, RowTop + row);

Once we have the dbID, we can retrieve information about that database.

DmDatabaseInfo (0, dbID, (char *) &DBName, &attributes, NULL,
 NULL, NULL, NULL, NULL, NULL, NULL, &type, &creator);

Now we must display that information. What we display depends on which column PalmOS wants us to populate.
So we switch on column. For each case, we need three pieces of information: a pointer to a string, the length of the
string, and which font to use for the string.

switch (column)
{
case 0: // column 0 shows index

StrIToA(string, RowTop+row);
display_string = string;
TextLen = StrLen(string);
font = 0;
break;

case 1: // column 1 shows Res/Data character
if (attributes && dmHdrAttrResDB) string[0] = 'R';
else string[0]='D';
display_string = string;
TextLen = 1;
font = 1;
break;

case 2: // column 2 shows type
display_string = (char *) &type;
TextLen = 4;
font = 0;
break;

case 3: // column 3 shows creatorID
display_string = (char *) &creator;
TextLen = 4;
font = 0;
break;

case 4: // column 4 shows dbName
display_string = (char *) &DBName;
TrimStringToFitCell(display_string, bounds->extent.x - 2);
TextLen = StrLen(DBName);
font = 0;
break;

}

And now all we have to do is display the string.

currFont = FntSetFont (font);
WinDrawChars(display_string, TextLen, bounds->topLeft.x, bounds->topLeft.y);
FntSetFont (currFont); // Restore the font.

}

GNU Pilot SDK Table HOWTO

Page 9 of 10 March 1998

For columns one to four I know that the string will fit in the cell, but in the last column the string might be larger
than the cell. Therefore I used the TrimStringToFitCell function when processing column five (case 4).

5. Scrolling the Table

Scrolling the table is easy. Of course, the user has to request a scroll, perhaps by depressing the page down or page
up hardware keys, or by tapping an on-screen button, or by selecting a menu item. You have to catch these events in
your FormEventHandler. I usually catch the hardware keys, but if you prefer on screen buttons you could create
buttons and catch the ctlSelectEvent or you could put the scroll commands in a menu and trap the menuEvent. Here
is the code used in FileListEventHandler to trap the hardware keys:

case keyDownEvent:
 if (event->data.keyDown.chr == pageUpChr)
 {

FileListScroll (pageUpChr);
FileListDrawForm();
handled = true;

}
else if (event->data.keyDown.chr == pageDownChr)
{
FileListScroll (pageDownChar);
FileListDrawForm();
handled = true;

}
break;

You see that I implement scrolling using a FileListScroll function. I pass one of two values: pageUpChr or
pageDownChr. These values are defined in PalmOS header files. After FileListScroll does its thing, I redraw the
form, using the custom form draw function discussed in section 3.

So what exactly does FileListScroll do? Not much. If the argument was pageUpChr then FileListScroll subtracts
numRows from the TopRow global, where numRows is the number of rows in the database. If the argument was
pageDownChr, then FileListScroll adds numRows to TopRow. Of course, we don’t want TopRow to be greater than
our maximum number of data rows. In the example NumDatabases is the maximum number of rows, so if TopRow
is larger than NumDatabases, then we set TopRow equal to NumDatabases minus numRows. In fact, there’s a better
way to do this. You can make sure that the last page displayed is always a full page by using the expression
“((TopRow + numRows) >= NumDatabases)”. I’ll leave it for you to figure out why that works.

Similarly, we don’t want TopRow to be negative, so if TopRow is less than zero we set it equal to zero. Notice that
the negative test comes after the maximum test. This is important. Consider the case where TopRow=0,
NumDatabases=5 and numRows=11. Someone pushes the pageDownChr key. FileListScroll adds numRows to
TopRow, so TopRow=11. But TopRow + numRows is greater than NumDatabases, so FileListScroll sets TopRow =
NumDatabases - numRows = 5 - 11 = -6. But now TopRow is negative, so the negative test has to come at the end.
Since TopRow is less than zero, FileListScroll sets TopRow = 0.

static void FileListScroll (int direction)
{

TablePtr tableP;
Word numRows;
FormPtr frm;

frm = FrmGetActiveForm();
tableP = FrmGetObjectPtr (frm, FrmGetObjectIndex (frm, tableID_FileList));
numRows = TblGetNumberOfRows (tableP);
if (direction == pageUpChr) TopRow = TopRow - numRows;
else TopRow = TopRow + numRows;

if ((TopRow + numRows) >= NumDatabases) TopRow = NumDatabases - numRows;
if (TopRow < 0) TopRow = 0;

}

GNU Pilot SDK Table HOWTO

Page 10 of 10 March 1998

6. Selecting a Table Item

If the user taps a table cell and the both the column and the row have been set to USABLE, then PalmOS adds a
tblSelectEvent to the queue. Your FormEventHandler traps the tblSelectEvent and takes appropriate action. When
PalmOS enqueues a tblSelectEvent, it includes the following data in the event data structure:

Ø TableID. Developer-defined ID of the table. You might have several different tables in your
form. Or you might have more than one form sharing the same FormEventHandler. In
either case, you will need to know which table the user tapped. If you only have one
table in your application, as in the example, then you don't need this information - you
know that there's only one table which could generate a table event, so you can
assume the TableID.

Ø pTable. Pointer to a table structure (TableType). This isn't really necessary - since PalmOS
gives you the TableID, you could get the table pointer easily using:

pTable = FrmGetObjectPtr (FrmGetActiveForm(), FrmGetObjectIndex(FrmGetActiveForm(), TableID));

Ø row. Row of the item. Very important. In all my applications, row determined what the
application does.

Ø column. Column of the item. Might be useful in your application. Not used in the example.

The following code traps and actions the tblSelectEvent in our example's FileListEventHandler function:

case tblSelectEvent:
 Show_database_index = TopRow + event->data.tblSelect.row;
 FrmGotoForm(formID_ShowDatabase);
 handled = true;
 break;

In the example, when the user taps one of the rows in the table we must show the database information for the
corresponding database. The global integer "Show_database_index" contains the index value of the database to
show. The ShowDatabase form provides the user interface for displaying this information. The function
ShowDatabaseDrawForm shows the information and the function ShowDatabaseEventHandler handles the events.
The ShowDatabase form and its two functions are very simple and have little to do with table implementation, so
they will not be discussed here.

7. Conclusion

That's all you have to do to implement a simple table. It's not hard. As mentioned in the introduction, you may wish
to become more sophisticated. For instance, you might highlight the most recently selected field, using the
TblSetRowSelectable call in the custom form draw procedure. Or you might implement tables that are larger than
the LCD panel. If you develop interesting tips and tricks, please consider sending them to me so that I might
incorporate them in future versions of this HOWTO.

Andrew Howlett
howlett@iosphere.net
Ottawa, Canada
March 1998

