GNU Pilot SDK Table HOWTO

PALMPILOT TABLESHOWTO V1.0

Copyright 1998 A.G. Howlett, howl ett@iosphere.net
Pilot, PalmPilot, PAlmMOS and Palm Computing are trademarks of Palm Computing and 3Com Corporation
Thisinformation may not be sold for profit.

1. Administration

1.1 DISCLAIMER

Thistutorial will explain how | use tables. It will present a very smple application that uses a table. The method
presented in this memo is not the only way, may not be the best way, and may not even be a good way. However
peopl e have been asking questions about how to implement simple PalmPilot table resources, so | offer this
HOWTO.

| haven’t done everything with tables, so thisHOWT O will not explain everything about a table. In fact | have done
very little with tables, so thisHOWTO explains very little. ThisHOWTO gives the recreational programmer a
gtarting point. It is expected that after mastering the techniques described here, the reader will find better and more
sophisticated ways to manipulate tables. If you improve on these methods, please send me a note describing your
techniques and | will immortalize your achievement in an updated version of thisHOWTO.

1.2 PLATFORM

This memo will focus on the GNU SDK. The techniques described here may be adaptable to other SDKs. All
references to PalmOS API functions, events, data structures, et cetera refer to the PalmOS 2 manuals. If it makesa
difference, | use the GNU SDK on Win95, debug on Copilot using a PAlmOS 1.0 ROM, and carry a Pilot 1000 with
a PalmPilot Professonal ROM upgrade.

The HOWTO was written in MS Word 97 and (tedioudy) converted to HTML for cross-platform distribution.

1.3 PREREQUISITES

Readers should master the techniques discussed in the GNU Pilot SDK Tutorial before advancing to tables. The
example application in thisHOWTO conforms to and extends the simple application structure discussed in the
tutorial. ThisHOWTO will explain line-by-line al the code in the example which is directly relevant to the table
resource. ThisHOWTO will not explain the smple application code and resources discussed in the tutorial . For
instance, thisHOWT O will not explain the PilotMain, EventL oop, and FormEventHandler functions, nor will it
explain the resource definitions used in the example. The reader should be able to read and understand these source
code elements without assistance.

1.4 THANK You

Most of the procedure explained here has been adapted from the Memopad.c source code copyright
PalmComputing. Thanks PalmComputing, and special thanksto DevSupport for the time they've spent promoting
recreational programming of the Pilot.

15 UPDATES

The most recent version of thisHOWT O will be available at my website <<www.iosphere.net/~howlett>>. If my
site moves, then check at Roadcoders or query your favorite search engine.

Page 1 of 10 March 1998

GNU Pilot SDK Table HOWTO

2. Organize your data

2.1 WHAT ISA TABLE?

A tableisaway of organizing data on the screen. For instance the Address List (press the Address hardware button
on your Pilot) presents your address data using a table of three columns and eleven rows. An intersection of a
column and arow iscalled a cell. Cells may also be called "table items’. According to the PAlmOS manual, part 1
page 114, the cells may contain other Ul objects such asfields and buttons. ThisHOWTO islimited to cells
containing text.

The PAlmOS manual statesthat the table may be larger than the LCD panel. The table implementation described in
thisHOWTO appliesto tables that fit on the LCD pandl.

When you tap in one of the table’ s cells PAlmOS enters a thl SelectEvent on the event queue. The tbl SelectEvent data
structure includes the row and column of the cell that was tapped. This allows you to execute different actions for
each column, row, and/or cell. In thisway the table can be thought of asa grid of buttons.

2.2 ORGANIZING THE DATA

Before writing any code, you must plan the presentation of your data. | use pencil and paper and draw what | expect
the screen to look like. Graph paper is helpful. The table below illustrates another planning tool | often use.

) Pixel width
Data Sour ce Character Width - - Comments
Required Assigned
Field One
Field Two
Field Three
Total: about 32 160

In my tables, each row isassociated with a record of information. The record has several fields. The problemisto
figure out which fields will be displayed, how many characters of each field will be displayed, the number of pixels
required to display the entire field and the pixel width assigned to the field.

Some things to remember when planning your column widths:

» In gtandard font characters average about five pixelswide. So pixel width required istypically 5 timesthe
character width. This means you’ ve got about 32 characters width on the screen.

» If your field islong, then you can truncate it and append an ellipsis (ellipsis are the three dots “...”). However
there must be meaningful datain front of the ellipsis or the screen space is wasted.

» Use the minimum number of characters. Use the symbol character sets where appropriate. For instance, if a note
is attached, use the note symbol instead of the four characters "Note". Be creative.

Next isto figure out the height of the table. The PalmPilot has 160 pixel-rows. If you want the form to have a title
bar, subtract 15 pixel-rows. Many people want on-screen buttons or a message area at the bottom of the LCD panel
— subtract another 15 pixel-rows. Now you’ re down to 130. Standard and bold font are both 11 pixels high, so you
canfit 11 rowsin the table. Some applications may require column headings. If so, subtract a row for that.

Page 2 of 10 March 1998

GNU Pilot SDK Table HOWTO

2.3 DEFINE THE RESOURCE

If you have organized your data properly, then you will be able to define the table Ul object. From PilRC documentation the
Table prototypeis

TABLE I D <ld.n> AT (<Left.p> <Top. p> <Wdth. p> <Hei ght. p>)
RONS <NunmRows. n> COLUWNS <Nuntol s. n>
COLUWNW DTHS <Col 1W dt h. n> <Col 2W dth. n>. ..

2.4 EXAMPLE

For our example, consider an application that lists the data bases on the Pilot memory card. We will call the
application “File Manager”. We want the list to show the dbl D, whether it’s a Resource database or a “data’
database, the Type of database, the CreatorI D, and the database Name. Furthermore, if we tap on one of the
databasesin the list, we want to see more details such as the number of recordsin the database, the total length and
the data length, and the database attributes.

We decide to use a table. Each row of the table will show information for a different database. The 160 pixel-width
will be divided as follows:

Pixel width

Data Character Width - - Comments
Required Assigned
dblD 3 15 15
Resource/Data 1 6 10 Eglodr fr(ﬁ‘gr;i’(gsf\?\; ggta
Type 4 20 30
CreatorlD 4 20 30

Suppose we need at least
Sx charactersto identify a
Name variable variable 75 database name, plus room
for the ellipsis.

Our form will need atitle bar, and we want some room at the bottom of the form to display other information and maybe
controls. So we have 130 pixel-height to work with, which gives us eleven rows in the table (using standard and bold fonts).

We now have all the information we need to define the table resource and it's form.

FORM form D_FileList 0 0 160 160
MENUI D nenul D_Mai nMenu
USABLE
NOFRANVE
BEG N
TITLE "Fil e Manager 1.0"
TABLE tabl el D _FileList AT (0O 20 160 140) ROAS 11 COLUWNS 5 COLUMNW DTHS 15 10 3030 75
END

3. Drawing the Table

31 GENERAL

Inthe SDK Tutorial drawing the form was smple. We defined our Ul objects and used the FrmDrawForm API call.
If your form contains a table, then the drawing requirements are more complicated. We must create a custom "draw
form™ function for the form containing the table. | usually take the name of the form and suffix "DrawForm" to it.
The DrawForm function must do at least Six things:

Page 3 of 10 March 1998

GNU Pilot SDK Table HOWTO

et rows usable/non-usable

mark rowsinvalid

set columns usable/non-usable

set the style for each cell

set the draw procedure for each cell
call FrmDrawForm

oukrwNE

3.2 SET Row USABLE

PalmOS displays only rows that are usable. The number of usable rows may change while your application is
running. For instance, if you have twenty itemsto list and only eleven row in your table, then your application will
initially display the first eleven items. So initially all eleven rows are usable. Then the user presses the page down
key and your application displays the final nine items. So the top nine rows are usable (rows zero to eight) and the
bottom two rows are non-usable (rows nine and ten).

Y ou set rows usable/non-usable with the ThlSetRowUsable API call. Its prototypeis.
voi d Tbl Set RowUsabl e (Tabl ePtr table, Wrd row, Bool ean usabl e)

Row is zero based (first row isrow zero) and usableis 1 for usable, O for non-usable.

3.3 MARK Row INVALID

If you set the row usable, then PAlmOS will draw that row. But if you need to redraw the table later on, Palm OS
will only redraw rowsthat are marked "invalid". "Invalid" means that the data source has been changed implying
that the data displayed by the tablein that row is no longer the same as the data source. Y ou mark arow as"invalid"
using the ThiMarkRowInvalid API call. Its prototype is:

voi d Thl Mar kRowl nvalid (Tabl ePtr table, Word row)

34 SET COLUMN USABLE

In the same way that PalmOS only displays "usable" rows, PAlmOS only displays "usable" columns. So you can turn
entire columns off if you want to. Consider a sophisticated table application where the user getsto choose which
data will be represented in each column. The user may choose to turn a column off. In my applications all the
columns are always usable. The call is ThlSetColumnUsable and its prototype is

voi d Thbl Set Col utmmUsabl e (Tabl ePtr table, Wrd row, Bool ean usable)

35 SETITEM STYLE

The DrawForm function must specify the style of each usable cell. Styles are defined in "table.h”. | always set the
item style to "customTableltem". Thisforces PalmOS to use my custom cell draw procedure. ThlSetltemStyle must
be called for every usable cdll. Its prototypeis:

void Thl SetltenStyle (TablePtr table, Wrd row, Wrd col um,
Tabl el tentSt yl eType type)

3.6 SET CustoM DRAW PROCEDURE

If theitem styleis "customTableltem” then PalmOS must use the application defined custom cell drawing
procedure. | always set the item style to "customT ableltem” and my custom cell drawing procedures will be
explained later. Y ou have to define the custom cell drawing procedure for each column. The prototypeis:

voi d Thl Set Cust onDr awPr ocedur e(Tabl ePtr table, Wrd col um,
Voi dPtr drawCal | back)

Page 4 of 10 March 1998

GNU Pilot SDK Table HOWTO

3.7 DRAW FORM

After all the table parameters have been set, our DrawForm procedure uses the FrmDrawForm API call to draw all
Ul objects, including the table.

3.8 EXAMPLE

Our formiscaled "File Lis" so we will call our custom draw form function "FileListDrawForm". First it will erase
the window. Then it gets pointers to the form and to the table.

static void FileListDrawFormnm(voi d)

{
For nPt r frm
Tabl ePt r t abl eP;
Ul nt dbl ndex;
Wor d row, numRows;
i nt curr Font ;
char string[30];

W nEr aseW ndow() ;

frm= FrnGet Acti veForm();
tabl eP = FrnGet Obj ect Ptr (frm FrnGetObjectindex (frm tablelD FilelList));

NumbDatabasesis a global variable containing the number of databases on card zero. If there are no databases on
card 0, then return from the function now.

i f (NunDat abases == 0)

Fr nDr awForm (frm ;
return;

}

Now we get to the guts of the function. TopRow isa global which is equal to the dblndex of the database which will
be drawn in the top row (row zero) of the table. Get the number of rows in the table using ThlGetNumberOfRows.
Stuff the value of TopRow into the RowData storage location that is part of the table structure (1'll explain why we
have to do thisin section 4).

dbl ndex TopRow,
nunmRows Tbl Get Nunmber O Rows (t abl eP) ;
Tbl Set RowData (tableP, 1, TopRow);

Page5 of 10 March 1998

GNU Pilot SDK Table HOWTO

Next we loop through all the rows and set them usable/non-usable, and if usable set them invalid and set theitem
style. We have to set the valuesfor all the rows, but we may not have enough databases on the card to populate the
entire table. If dbIndex islessthan NumDatabases, then we have an entry for that row so we set the row usable,
mark the row invalid, and set the item style of every cell in the row to customT ableltem. If dblndex is not lessthan
NumDatabases, then we set the row non-usable.

for (row = 0; row < nunRows; row++, dbl ndex++)

i f (dblndex < NunDat abases)

{
Tbl Set RowUsabl e (tabl eP, row, true);
Tbl Mar kRowl nval id (tableP, row);
Thl SetltentStyle (tableP, row, 0, custoniablelten);
Thl SetltentStyle (tableP, row, 1, custoniablelten);
Thl SetltentStyle (tableP, row, 2, custoniablelten);
Thl SetltentStyle (tableP, row, 3, custoniablelten);
Thl SetltentStyle (tableP, row, 4, custoniablelten);
}
el se
Tbl Set RowUsabl e (tabl eP, row, false);
}

}

We have to set the custom cell draw procedure for each column. We decide now that the name of the custom cell
draw function will be "FileListDrawCell". We also have to set all the columns to usable. When that's done we can
call FrmDrawForm.

Thbl Set Cust onDr awPr ocedur e (tabl eP,
Thbl Set Cust onDr awPr ocedure (tabl eP,
Thbl Set Cust onDr awPr ocedure (tabl eP,
Thbl Set Cust onDr awPr ocedure (tabl eP, 3, FileLi stDrawCel
Tbl Set Cust onDr awPr ocedure (tabl eP, 4, FileLi stDrawCel
Tbl Set Col umUsabl e (tableP, 0, true);

Tbl Set Col umUsabl e (tableP, 1, true);
Tbl Set Col umUsabl e (tableP, 2, true);
Tbl Set Col umUsabl e (tableP, 3, true);
Tbl Set Col umUsabl e (tabl eP, 4, true);
Fr nDr awForm (frm ;

, FileListDrawCel l)
, FileListDrawCel)
, FileListDrawCel)
I)
)

A WNEFLO

When using a scrollable table it's a good idea to indicate the total number of rowsin the data source. Y ou can do this
in several ways. Some apps use FrmCopyTitle to indicate the number of records right in the form title. This app uses
WinDrawCharsto print a string at the bottom of the LCD panel. Because we use the WinDrawChars API call, we
had to include the WinEraseWindow call at the beginning of the function.

StrlToA (string, NunDatabases);

StrCat (string, " databases on card 0");

W nDrawChars (string, StrLen(string), 0, 149);
}

4. Custom Cell Draw Procedure

4.1 GENERAL

When PalmOS draws the table it calls the custom cell draw procedure. Y our application does not call this procedure
- PalmOS calls this procedure. This statement has an important implication - none of the global variablesin your
application will be accessible to the custom cell draw procedure. For instance, in our example the TopRow global
variable will not be accessible to the custom cell draw procedure. That's why we stuffed it into the row data area
using ThlSetRowData when we drew the form. Any data that you need to pass from the application to the custom
cell draw procedure must be communicated using the row data area.

Page 6 of 10 March 1998

GNU Pilot SDK Table HOWTO

When PalmOS calls the custom cell draw procedure PalmOS passes the table pointer of the relevant table, the row
and column of the cell to be drawn, and a Rectangle structure which describes the location and size of the cell. If
you have multiple tablesin your application, it is conceivable but not recommendable that you could use one custom
cell draw procedure and switch on the table pointer to implement different functions for different tables. It would be
way easier to write different custom cell draw procedures for different tables.

Y our cell draw procedure processes the row and column arguments to determine how to populate the cell. Exactly
how the row and column arguments determine the contents of the cell depends on how you choose to organize your
data. PAlmOS leaves a lot of room for programmer imagination.

4.2 BEWARE THE BOOLEAN!

The data to be displayed in a cell often requires more pixels than the pixel width of the cell. Memopad.c and my first
custom cell draw procedures used the FntCharslnWidth function call to trim strings such that they would fit in the
cel. Thelast argument of FntCharslnWidth is a boolean. Beware the boolean when using GCC! | compiled many
PRC files that worked fine on Copilot but resulted in Fatal Errors on PalmPilot. These are obvioudy word alignment
errors. Fooling around with booleans, for instance declaring a second boolean variable, often removed the fatal

error. Later on | invented an alternative to the FntCharslnWidth function in order to avoid the boolean. The
alternative function is:

/***

*

TrimString To Fit Cell
| don't want to use the Fnt CharslnWdth function for two reasons:

*

*

*

*

* 1. The use of a bool ean causes strange problens with GCC

* 2. 1 want ellipsis ("...") to appear at the end of truncated strings
*
*

***/

void TrinStringToFitCell (char *string, int cell _w dth_pixels)

if (FntCharsWdth(string, StrLen(string)) > cell_w dth_pixels)
{

cell _w dth_pixels -= 6;
do

{
string[StrLen(string) - 1] = 0;
} while (FntCharsWdth(string, StrLen(string)) > cell_wi dth_pixels);

StrCat(string, "...");

}
}

4.3 EXAMPLE
The custom draw cell procedure will be called FileListDrawCell.

static void FileListDrawCell (VoidPtr tableP, Word row, Wrd col um,
Rect angl ePtr bounds)

{
DwWor d dbl D;
short font;
char DBNane[32], *display_string, string[5];
short Text Len;
Font 1 D currFont;

unsi gned | ong type, creator, RowTop;
unsi gned short attributes;

Page 7 of 10 March 1998

GNU Pilot SDK Table HOWTO

We want to get the database id of database to be displayed in thisrow. To figure this out, we need to know the
dblndex of the row. From the Form Draw routine we know that the dblndex is equal to TopRow plus row. But first
we have to get the value from where we stashed it — that is, out of the row data area of row 1. | call TopRow
RowTop within the custom cell draw procedure to remind me that it isn't really the global variable.

RowTop = Tbl Get RowDat a(t abl eP, 1);
dbl D = DmCet Dat abase (0, RowTop + row);

Once we have the dbl D, we can retrieve information about that database.

DmDat abasel nfo (0, dblD, (char *) &BNane, &attributes, NULL,
NULL, NULL, NULL, NULL, NULL, NULL, &type, &creator);

Now we must display that information. What we display depends on which column PalmOS wants us to popul ate.
So we switch on column. For each case, we need three pieces of information: a pointer to a string, the length of the
string, and which font to use for the string.

swi tch (col um)

{

case O: /1 colum 0 shows i ndex
Strl ToA(string, RowTop+row);
di splay_string = string;
TextLen = StrlLen(string);

font = 0;
br eak;
case 1: /!l colum 1 shows Res/Data character
if (attributes & dnHdrAttrResDB) string[0] = 'R ;

el se string[0]="D;

di splay_string = string;
Text Len = 1;

font = 1;

br eak;

case 2: /1 colum 2 shows type
di splay_string = (char *) &type;
Text Len = 4;
font = 0;
br eak;

case 3: /! colum 3 shows creatorlD
di splay_string = (char *) &creator;
Text Len = 4;
font = 0;
br eak;

case 4: /1 colum 4 shows dbNane
di splay_string = (char *) &DBNane;
TrinStringToFitCell(display_string, bounds->extent.x - 2);
TextLen = StrLen(DBNane) ;
font = 0;
br eak;

}

And now all we haveto do isdisplay the string.
currFont = Fnt Set Font (font);

W nDr awChar s(di spl ay_string, TextLen, bounds->topLeft.x, bounds->topLeft.y);
Fnt Set Font (currFont); /'l Restore the font.

}

Page 8 of 10 March 1998

GNU Pilot SDK Table HOWTO

For columns oneto four | know that the string will fit in the cell, but in the last column the string might be larger
than the cell. Therefore | used the TrimStringToFitCell function when processing column five (case 4).

5. Scrolling the Table

Scrolling the table is easy. Of course, the user hasto request a scroll, perhaps by depressing the page down or page
up hardware keys, or by tapping an on-screen button, or by selecting a menu item. Y ou have to catch these eventsin
your FormEventHandler. | usually catch the hardware keys, but if you prefer on screen buttons you could create
buttons and catch the ctlSelectEvent or you could put the scroll commandsin a menu and trap the menuEvent. Here
isthe code used in FileListEventHandler to trap the hardware keys:

case keyDownEvent:
i f (event->data. keyDown.chr == pageUpChr)

Fil eLi stScroll (pageUpChr);
Fi | eLi st DrawFor nf) ;
handl ed = true;

el se if (event->data. keyDown. chr == pageDownChr)

Fi |l eLi st Scrol | (pageDownChar);
Fi | eLi st DrawFor nf) ;
handl ed = true;

}

br eak;

Y ou seethat | implement scrolling using a FileListScroll function. | pass one of two values. pageUpChr or
pageDownChr. These values are defined in PAlmOS header files. After FileListScroll doesitsthing, | redraw the
form, using the custom form draw function discussed in section 3.

So what exactly does FileListScroll do? Not much. If the argument was pageUpChr then FileListScroll subtracts
numRows from the TopRow global, where numRows is the number of rowsin the database. If the argument was
pageDownChr, then FileListScroll adds numRows to TopRow. Of course, we don’t want TopRow to be greater than
our maximum number of data rows. In the example NumDatabases is the maximum number of rows, so if TopRow
islarger than NumDatabases, then we set TopRow equal to NumDatabases minus numRows. In fact, there' s a better
way to do this. Y ou can make sure that the last page displayed is always a full page by using the expression
“((TopRow + numRows) >= NumDatabases)”. I'll leaveit for you to figure out why that works.

Similarly, we don’'t want TopRow to be negative, so if TopRow islessthan zero we st it equal to zero. Notice that
the negative test comes after the maximum test. Thisisimportant. Consider the case where TopRow=0,
NumbDatabases=5 and numRows=11. Someone pushes the pageDownChr key. FileListScroll adds numRows to
TopRow, so TopRow=11. But TopRow + numRows s greater than NumDatabases, so FileListScroll sets TopRow =
NumbDatabases - numRows =5 - 11 = -6. But now TopRow is negative, so the negative test has to come at the end.
Since TopRow islessthan zero, FileListScroll sets TopRow = 0.

static void FileListScroll (int direction)
{

Tabl ePt r t abl eP;

Wor d numRows;

For nPt r frm

frm= FrnGet Acti veForm();

tableP = FrmGet Obj ectPtr (frm FrnGet Obj ectlndex (frm tablelD FileList));
numRows = Tbl Get Nunber O Rows (t abl eP) ;

if (direction == pageUpChr) TopRow = TopRow - nunRows;

el se TopRow = TopRow + nunmRows;

(TopRow + nunRows) >= NunDat abases) TopRow = NunDat abases - nunRows;

if (
if (TopRow < 0) TopRow = 0;

Page 9 of 10 March 1998

GNU Pilot SDK Table HOWTO

6. Selecting a Table Item

If the user taps a table cell and the both the column and the row have been set to USABLE, then PAlmOS adds a
tbl SelectEvent to the queue. Y our FormEventHandler traps the thl SelectEvent and takes appropriate action. When
PalmOS enqueues a thl SelectEvent, it includes the following data in the event data structure:

» TablelD. Developer-defined ID of the table. You might have several different tables in your
form. Or you might have more than one form sharing the same FormEventHandler. In
either case, you will need to know which table the user tapped. If you only have one
table in your application, as in the example, then you don't need this information - you
know that there's only one table which could generate a table event, so you can
assume the TablelD.

» pTable. Pointer to a table structure (TableType). This isn't really necessary - since PalmOS
gives you the TablelD, you could get the table pointer easily using:

pTabl e = FrnGet Obj ect Ptr (FrmGet ActiveForm(), FrnGetCbjectlndex(FrmGetActiveForm(), TablelD));

> row. Row of the item. Very important. In all my applications, row determined what the
application does.

» column. Column of the item. Might be useful in your application. Not used in the example.
The following code traps and actions the tbl SelectEvent in our example's FileListEventHandler function:

case thbl Sel ect Event:
Show_dat abase_i ndex = TopRow + event->dat a. t bl Sel ect. r ow;
Fr mGot oFor n{ f or M D_ShowDat abase) ;
handl ed = true;
br eak;

In the example, when the user taps one of the rows in the table we must show the database information for the
corresponding database. The global integer "Show_database index" contains the index value of the database to
show. The ShowDatabase form provides the user interface for displaying this information. The function
ShowDatabaseDrawForm shows the information and the function ShowDatabaseEventHandler handles the events.
The ShowDatabase form and its two functions are very smple and have little to do with table implementation, so
they will not be discussed here.

7. Conclusion

That'sall you have to do to implement a smpletable. It's not hard. As mentioned in the introduction, you may wish
to become more sophisticated. For instance, you might highlight the most recently selected field, using the
ThlSetRowSel ectable call in the custom form draw procedure. Or you might implement tables that are larger than
the LCD pandl. If you develop interesting tips and tricks, please consider sending them to me so that | might
incorporate them in future versions of this HOWTO.

Andrew Howlett
howl ett @i osphere.net
Ottawa, Canada
March 1998

Page 10 of 10 March 1998

