United States Patent

[19]

Rode et al.

un - 3,863,060
(451 Jan. 28, 1975

[54]

GENERAL PURPOSE CALCULATOR WITH
CAPABILITY FOR PERFORMING
INTERDISCIPLINARY BUSINESS
CALCULATIONS

Primary Examiner—Eugene G. Botz

Assistant Examiner—David H. Malzahn

Attorney, Agent, or Firm—Roland . Griffin; F. David
LaRiviere :

[75] Inventors: France Rode, Los Altos; William L. [57] ABSTRACT
Sr(;:vlevi, i'l:’ Csulper;n'w; .A.Iex‘all;del" A battery-powered, hand-held, calculator employs
S .C * h a eil;" ; dl;\l r‘m(ir’c?’cl i’.;'d MOS/LSI calculator circuits to perform arithmetic and
--ochran, Falo Alto, all of Cahf. financial calculations. Data and commands are input
[73] Assignee: Hewlett-Packard Company, Palo to the calculator from a keyboard having a prefix key
T Ao, Calif. T T T to double the functions of selected keys. A 15-digit,
_—— seven-segment light emitter diode (LED) display
[22] Filed: Oct. 30, 1972 serves as the output for the calculator. The calculator
[21] Appl. No.: 302,371 circuits include a read-only memory circuit in which
the algorithms for performing the arithmetic and fi-
(52 US.'Clcorro 235156 nancial caleulations are stored; a control and timing
511 Int. Cl GO6f 7/38 circuit for scanning the keyboard, retaining status in-
[58 Fi id fS """" h """"""" 235156159 160. 164 formation about the condition of the calculator or of
[58] Field o eza;c 92C92 C/P' 3;10 12’2 5. 144 17 an algorithm, and generating the next read-only mem-
5/92 AC, ’ /122.5; / ory address; and an arithmetic and register circuit
. containing an adder, a group of working registers, a
[56] References Cited group of data storage registers forming a stack for roll
UNITED STATES PATENTS down operation, and a constant storage register. These
3,017,103 1/1962 Goldberg et al. 235/176 circuits are interconnected by a multiple line buss
3,533,076 10/1970 Perkinsetal.................... 340/172.5 system.
3,631,403 12/1971 Aslooetal...coccunneninnn... 340/172.5
3,720,820 3/1973 Cochrancccoeveveivivnvenenn, 235/156
3,760,171 9/1973 Wangetal.......oooeeviennn. 235/156 34 Claims, 36 Drawing Figures
<IO
32.65 LR g
OFF[CT_JON
Vi A A

Yy 5 9%

15 7 [[1-] [soo] [ow]
v % °
-
V%2 '
=] 1]]
] L1] [
Lz] |

5 |
7/%
T+

-]

3

PATENTED JiN 281375 | 3,863,060
SHEET 01 0F 28

5
19
S e
7
i saved | [so] ﬁq cLx
iRy

NNl
D &
o0&
el
A I

:Figure 1
POSSIBLE TRANSFER PATHS BETWEEN ROMS
ROM N ROM M
B Lo

e~/
PRESENT C ,
LOCATION | A c’ La v \B
L3
v N _
) /<=1 DESTINATION

3.863.060

PATENTED JAN281975

2 ainbip

SHEET 02 JF 238

(IS1/SOW) 2y
NnouD 49ysiBay g dURWIYHIY (IST1/SOW) HndonD butwiy g joguoy [— 7 7 1
02 82= L _
S R4LINDYID 104INO _ !
Lpg A ! “
4151938 o $S3400Y N¥NL3Y _ |
92 T ONIIL
INIdAL 2 _ |
S | stswis 2 | |
v 0050 = Tos JBLIONO LOTTES Q0| o T |
WSI0 NOLLONYISNI - SHLISI9N VAN | ¥IQ0V | SSIOY |
Ob .90 . ! Lo 0dvoaAdy
_Ttu] iy Wittt | I S N
- (¥10dig) “ ! ms| 1| = |
} _———
“ WINNO 300NV [IR o ﬂ “ e 4 “
| | (IR X e R R O] P
| _ 4 1S7/S0H IS1/50M 1T A9+~ AlddS H ACLel
| U _ V& s1ig SUgN (|| anod | L M
| by L osse J-———— 0952 0962) |1 T
] sanno- [ream — | fsw % QW] | e |
! _ || o 2¢7 i H |
L woae || [l e --- o 1w | |
| vis | IO 30010 52 | - | T oo NOU3MOG | |
ml I“ - 15 —————— — F.H ||||||||| -
||||| ptd ¢ e

3,863,060

PATENTED JAN2 81975

C3JF 28

SHEET

€ Old

(37040 QUOM 3O NOILYOd) JWIL

/

SM
(ELUE

°_ 08 oy Of 0z, o
YIENNN 11910
€L 2 0 o 6 8 L 9 & b £ z
T T T T T T T T " T .-.(Izom QS;
INIOd uz_:oﬁ
NOIS = VSSLLNVH N9IS [=—dx3 —=
1 INVA dx3 QHOM
uz:zu
2 fl-¢
— [&aa
i 8
0 (zi910)
l ~A9 Sh
2 6l
—_— t— A9
44 Sh N. L 0
—— r
— Ol ——— S
b L/ pog uo mc_ucoawo U —A9 I
. o1bo g Ao
S o 20, 40 L, 216071 88 ADW 0 "
_ _ L A9 IN

sjeudig Sulwi| wayskg

3.863,060

15

PATENTED JAN2819

SHEET CuoOF 28

¢

v Old

PARCALET e

0g n7
L 3
=8P
S
(=]
[l
m
o
¥300030 100
Nm{
Nvlre Y3INNOD WILSAS o1
NMOG A3X
il

(9) 4ng 3000-43¥ - 9G

147

13373S QoM

430093¢

431Ni0d

3

(#) ¥3LNI0d

4010vy18ns

SH3I4TYND

i

S3NITI0HINOD

L4

SS3MAAY LX3N

H3TT041NOD

QINWYYI0Yd
4300030 INIWIL -042IN

‘934 SS3HAAY

9

8¢

_Iﬁ (8) 4ng $SIyaaY

3

89

gsr

HHL\ES«%]

‘Il_ (8) SS3YAQY Nuniy

09

gsr

¢9

L
(2t) sug snivis H

—{ (8) SSIHAGY WOY

! 4

0/J

Hy 8

[4

8G

3.863,060

PATENTED JN281875

SHEET OSOF 28

GOld

0§
r—A- 30
1 [
| l
H L
| "
AL e R I
_ i
i i
T T
1 =y
==} —
Nm,r TYVY Y bS
HOXITdILTINW &, 4300030 ¥, - 8Y
I VY DR I N
'3000 AN
SYIJSNVYL ONY r l_ (9S QONW)
oussnivis si3s | || op 1o 2y £ vp 50 | ¥3INNOD
OIS NAOO AN | | LESS
v
L

0 118 snuviS oL

_ 4344n4
3000 AN

g

3NIT VI ONY
43151934 SS3¥AAY WOY OL
100 TVIH3S

3,863,060

PATENTED JAH281375

SHEET CEBOF 28

9°9I4

(6G)3NIL

| |
¢8~f _ I
_ [_
0s _ !
T 98100930 |
¥ —(muu._msm 193135 QHOM | ot |
I 193735 a¥om |
9 TOOT Lo 225
. 419 ONAS .
o = e b2 08
T0HINOD
9¢ SHOY ¥IHLO S b.
NO HOLLO YSVH) — 891
% | T N HI S
; =| 1 _
I “ G W
- bolgl D18
43 | A i
¥30003a |1 €] | ES
W W T S w |
HOY S WOy “ LIW BE
s
K S
0 HOY NO f dSH
O S mv. 9/
8¢ 378VN3 B
@Ih_ 2¢

3,863,060

0 JAH 281875

STENTE

+

P.

SHEET 07 0F 28

om_ o¢_ om_ om_ o\: ﬂw
S - (021907
Hmwzc _.I._ _|_ 57 (121901
(11001 1101l NOILONYISNI) S1
—— JNI1 " 0
onu ov_ om_ m__lm : ” (0 2190T)
71 esn I U L s (191907

(1010 101 SS3Naay) 21

s(eublS UojanIIsu] puy ssaippy |eaidd]

3,863,060

PATENTED JAN281TS

SHEET CBOF 28

SM M3N
dn 138

8 Old

~=— JNiL

14

6l

1ndin0 SI vIY3S ﬂ SS3JIV WOy 1NdNi

4aav WOy

934 ISNI 0L
1ndino 1371V4vd

Guiwi| Jnopesy puy Buissaippy

_nv 12
_ S

3,863,060

PATENTED JA¥281975

C30F 28

SHEET

LU

of1

10t

00!

110

olo

000
3009

69I4

HIGWNN 1101d
£l a1t o, 6 8 L 9 S, ¢
gl e ool 6 8 L 9 S ¥

£ 1V ¥3iNiod

s|eubig 199(9S plop

KTNO'NOIS VSSILNVH

QHOM - 34LLN3

NJIS HLIM YSSILNVW

KINO VSSILNVA

NJIS IN3INOJX3

IN3INOdX3

431NIOd 0L dn

AINO Y3LNIOd

3,863,060

PATENTED JAN2 81875

SHEET 100F 28

YIAIHG

300HLY) 0L < .Eﬁw_

8¢ vm
3 —%
¥3AI40 300Nv 01 | §]
§ /7 w30003a
WWSI0

O

H3LINN0J
18 2 135y

R

—{ w9

_ (990 |

_ (94 |

_
!
[
_ (95)3] __
_
_
_

267 4300030

129

44 i :
AYYvO @v
[

G8

o 2408V
Y . W0y
WIS [T:zz_

C

¥8

SANI
104LNOD

— 1 0¢

NOILONYLISNI

(@B ST
111

¥344ng ST

3.863,060

PATENTED JAN2 81975

110F 23

SHEET

11914

H3IAINE AVIdSIQ OL

—— A,
3¢08%V

HIHH

| 4300030
AV1dsia

ad8

(91 LINJHID ONIWIL ANV TOMAINOD OL)
AHMYD
pe/

43181934 14IHS
. 118 96 =
e} Q

3.863,060

SHEET 12 0F 28

PATENTED JAN2 81875

AR E

IWIL 11910 3INO
A
. M
bl £l a N
INIOd TVHIDIQ — ~ap T u||m;|x.w. 3 VIV
S139VT INIWI3S 0.
P__A__ 2 _ 4 avwo
p _ W
dp
o} =] O
_ - _) 2)) AL
m |||||||||||||||||||||| xln
q _ _ $
0.
B) __dp L 9 | a_ 8w
© © O v V1VQ
NO INIW93S P —t AP o
o

41 INIS34d TVNIIS ——

Jnadig dasifay puy onauwyiMy wod{ Suipossq Kejdsig

3.863,060

- PATENTED JAN2 81975

SHEET 130F 28

¢l old

bl el 21 1
0.
u LAl
4 [3)
w aviva
> A
0.
(__ 0w
P 2
0.
o_ R
al : .
0.
) T v e
) . _

6 18ig 404 ndyng 9jduexy

3,863,060

PATENTED JAN281975

SHEET 14 OF 28

0,

$1OI4

JINLL QYOM 40 NOILYOd
0 02,

o,

0

jeufig 1Bl

=

SI0A 0

SIT0A 9

PATENTED JAN281375 3,863,060
SHEET 15 OF 28

8K i +V

N
NS

Q
Re 8>

L———> TO THE ENABLE INPUT OF ‘A SIMILAR CIRCUIT

igure 15

CLOCK DRIVER TIMING

OUTPUT FROM

A
NODE DRIVER 0.8V

Vin

(PINS 1&4) Voo —0.8V

CLOCK DRIVER OUTPUT
Vg +0.8V

VouT
(PINS 588)

© PNENTEDAWEBWTS 3.863,060
: ' SHEET 1B 0F 28

)
Z& L/

RESET

% gy
T-s
|

4100

L oo

3.65v

SN
v
Comp/\
I_NI
v
1241 >————Ver

EXT. >—05¢
LC CRCUIT

TRIM

FIG.17

PATENTED JAW281975 3.863,060
- SHEET 170F 28

T T2 T3 T4 TI
OSC. OO0 Uy ooy
QLTI Ml e e
Ql T I 1 J f I 1 J 1 —
Q2 f] f Ll] [I f
Q¥ I [24, /1T 1 T 1
Q4 | 1 S
QI L L L J ||
B2 7] U 1L 1] |
Reset 7|
C.CL I |72 LT
Se) A
Sq vz 7
Sc T Z| vzzZa
Sb V222 Y|
Sd Tz - w7z
SF v |77
Sb G2
Sdp a2
A [Ta T a | | I a
B b] b]
C [¢ | o T[T e
D [Te T~ d R
A - I F - do |~ g~
Ty T2 T3 Ta T

PATENTED JAN2 81975 - 3,863,060
SHEET 18 (F 28

FIG.19

Timing for Decimal Point Drive

e——5 {1 SEC ———~
COUNTER

CLOCK | |
i —

ANODE

ANODE - Tdp OPENS
CURRENT

LED
CURRENT .

SWITCH Tn-; OPENS AND SWITCH Tn CLOSES

FIG.20

014
o]

()

013

PATENTED JAN281875

SHEET 130F 28

o O ‘\ 7
o { L
;; AN |
_Q_J—_Lé
» Ix
=]
v
—\)
L/ DC o

STARL

Al
:

P

10|

3.863,060

'
S~
10 ~
Il< <|unl
WA I
“Els
S

=)
v b S

~lz < A

%) o

2TERE

[~ |
w4+ o+

+ - |

<~ 239

N < I

v .

M "o b n
—_ o~ o
x O O O
'

AC)

(013 + 014) (012

013

014 = (014 + 015 + AC) (013 AC)

FIG.22

PATENTED 281675 3.863.,060
: SHEET Z2OOF 28

s

102

-104

1

,\
FIG.23
[

Lozsi.ooz

FIG.24

Keyboard Force - Deflection Curve

|
|
i
I
FORCE [
(GRAMS) | A
!
| | '
: E:ectriccl Contact
|

FIG. 25 o5 040

DEFLECTION (Inches)

PATENTED JAN2 81875 ’-3 863,060
SHEET c10F 28

ANODE

) DIGITT DIGIT2 DIGIT 15 ,TSQ:\%EETSR
a r——— Fr——— . rm—=——]
1 A
e
I 1, | .
..-—-mrlr ;A "“S ; - i : a\lo—<
! ¢ P ! I |i' : I
I | R | [I
Ldp | : (o : : l :
iy . N
T i » ' - | : 0 No—q
i %ﬂ] | 1
oYL Y .
b 0 [
X } CATHODE TRANSISTOR SWITCHEéT
TVBATT

FIG. 26

PATENTED JAN 281975
SHEET 22 0F 28

VsuppLy

CATHODE
O TRANSISTOR

ANODE
TRANSISTOR O

FIG. 27

VsuepLy

[

L kCATHODE SWITCH

3.863,060

: 1 VcSAT
RL Rc SAT
@ CALCULATOR PARAMETERS

Va Rg
RaSAT
VaSAT
ANOQDE
SWITCH

oo

FIG.28

L=130nh

RL= 4.0

RaSAT =10
Rd=10
RcSAT=1Q.

Vd = 1.7 Volis

Va SAT =, 3 Volts
Ve SAT = 45 Volts

PATENTED 281575 3,863,060
SHEET 23 0F 28

Inductor Current And LED Anode Voltoges

I
80ma

Mg VA & V.
2.85us +——><——-5.88us —»—1
CHARGE DISCHARGE

V@ de +VCSAT
VsuppLY + oA
+—V0 SAT

° }
FIG. 29

PATENTED JAN281975

3,863,060

SHEET 24 OF 28

FLOW DIAGRAM OF DISPLAY WAIT LOOP

Return from display
mask routine

pisi |

SET STATUS 8

D1s2

RESET STATUS 0|

D1S3
DECREMENT
POINTER

D1s8

| DISPLAY OFFl

D1S5

l DISPLAY TOGGLE1

D159

JUMP TO D186
EW KEY ROUTINE

D1s7

RESET S8

FIG.31

Pointer is at 12 at this time,
and the display is off.

Status 8 = 1 indicates "key
has been processed"

Status 0 = 1 indicates a key is down

This loop takes 48 word times
or about 14.4 msec. It prevents
key bounce from executing a
function twice.

Check 1if key 1is processed. First
time S8 = 1 so go to D1S5.

Turn on display to see answer
from previous operation.

Check if key down. If no (SO = Q)
reset S8. If yes, return to check S8.
At least one pass through D1S7 must
be made to insure a key is processed
only once.

00elx 4 OO0l xJd
AV1dSIa AV1dSId

3.863,060

2S0F 28

SHEET

PATENTED JAN281975

e .m_uﬁ.
oVl | | xR L] Ny utr0t S
13s —N =d Y3IN3 (1) m.exwt
—:NI' 1 404 3IA10S I
! : Ad==NAd | | LNdAJN | o
N—=N T E R 0= aFy NN
D=2 -:NI't 804 IAT0S t'2
(LENIN 9y 14 1Nd 1Nd ‘Ad N ultt1)?
—_—d=1 — —_—= el = -
4N © ¥v3mo g ~d ¥31N3 © ENTES Ad
3NIVA ONILYVLS —: NIt 804 3AT0S €72

3,863,060

PATENTED M2 81975

260F 23

SHEET

-0l

pe b1

2

ro

¥ x 002
L AVIdSIa
x NOdNO, WNLIYy 5, OOy N youya %
SIA |-
-
[N|ovas~L=r e
2
(¥ =g+ 1) =X _MIN-D+L TN
-nr I ST =4
aNOg 3HL 40 3DI8d —d
\ A % 31vH NOdNOD =9
_ j SAVQ Q3LYSNIdWOINN—N
XXd— o8l
14— ¥4 —-Y -~ N (¥) anog v
‘ 40 ALINNLYI OL QT3IA 29
‘ J S3A
- n(8+1)
XXH—=M N —————=q hl - d¢d _
[d—p(u+0]4 oor -~ @ 5 A
gz8l oVl |
D e B .|Z' N - 4v3To OZ
¢e .m_W
2 dN+2 _ 08l 00! - SN
- =Ad o8l _\] 210 0
5(N-D 240029 San g Y 83IN3
- Am+$lﬁm+$.m. + Am.+ 1)00I=Ad |~e— |N]OVHI-1=1 ‘lm.mm_ =N % 31vd NOdNOJ3 -9
N r N - ON % 31vH 1S3YILNI-Y
SAVA G31VSNIdWOONA—N

(Ad) ANO8 Vv 40 301¥d 1’9

PATENTED JAN2 81975
D ? 3.863,0860
SHEET 270F 28

7.1 DATEI - DATE2

ENTER SET
Y,M,D; N FLAGT [| *

ENTER D3-=-D3+Y + 365

: YMD -
/. Y2,M2,D2 FLAGI D=—D+Y+365+INT(Y/4)

7.2 DATE + N DAYS ;

DATES ENTERED AS FLAG 2
MM. DDYYYY FOR
RANGE

01.011900 =12.312099 NO

@ YES

NO
Di—=—D
Y -—Y2
M = M2
D—=— D2
D4—=-D3
SET FLAG 2

—
D=|DI - D |
D’=|D3-D4|

YES
D>180

DISPLAY D’IN Y REGISTER

DISPLAY D IN X REGISTER

(UNCOMPENSATED DAYS)

M=1
NO
(E) ERROR
M ~—M—T
GOSUB M,J
D~D+30+J .
D3 =-D3+30+J ' :Flgure 35A

NO

Y

YES

D=—D+L

PATENTED JAN 281975

Y =INT(N/365)
K = N-365Y-INT(Y14)

3,863,060

SHEET 280F 28

E
K>0 YES
NO

K=N-365(Y-1)-INT ((Y-1)/4)

Y—Y+1

2

YES
L=1
M=1
7

GOsSuUB M,J
DI=30+J

K=—K=D1
M=—M+1

NO

YES
D=K
Y-—Y+1900
DISPLAY Y,M,D

I RETURN I

=l

=-2
5

?__g_ur‘e 35B

3,863,060

1

GENERAL PURPOSE CALCULATOR WITH
CAPABILITY FOR PERFORMING
INTERDISCIPLINARY BUSINESS CALCULATIONS

TABLE OF CONTENTS

Section
Background and Summary of the Invention
Description of the Drawings
* Description of the Preferred Embodiment
System Architecture
Control and Timing Circuit
Read-Only Memory Circuit
Arithmetic and Register Circuit
Clock Driver ‘
Anode Driver’
Cathode Driver
Keyboard
- LED Display
Instruction Set
Detailed Listing of Routines and Subroutines of In-
structions
Functions
Operating Instructions

BACKGROUND AND SUMMARY OF THE
INVENTION

This invention relates generally to calculators and
improvements therein and more particularly to non-
programmable business calculators.

- Conventional business calculators generally have less
capability and flexibility than is required to meet the
needs of the business user. They are usually designed
to solve the most elementary calculation of one busi-
ness discipline (i.e., banking or real estate, or finance,
etc) and ‘lack the capability and flexibility for inter-
disciplinary business calculations. For example, there
are special calculators for financiers to solve bond yield
and bond price problems, and calculators for realtors
to solve mortgage amortization and depreciation prob-
lems. However, a financier who wishes to quickly com-
pare the rate of return between bonds and real estate
will either need two expensive calculators or will have
to compromise the degree of accuracy of the calcula-
tion with gross mathematical approximations per-
formed on a single purpose calculator. This limitation
of single purpose calculators can lead to critical errors
in decision making. Because conventional single pur-
pose business calculators are designed for special appli-
cations by specialists in that area, the keyboards are
generally not selfexplanatory and appear as a befud-
dling collection of buttons and switches with special
symbols. This requires a longer user orientation period
before productive usage begins.

Due to the high cost and the limited capabllmes of
the available business calculators, and sometimes, sim-
ply because there is no calculator available to perform
certain calculations, the majority of the everyday busi-
ness calculations are still made with the aid of pub-
lished tables. Published tables are the only convenient
means available for solving certain financial problems,
such as calculations for the discount amount in dis-
counted notes and the equivalent interest rate between
accrued interest notes and discounted notes. The main
disadvantage of using tables is the inherent restriction
to the discrete values given in the table. The accuracy
of the calculation is limited to the accuracy of the ta-
bles and the need for interpolation further compro-

20

25

30

35

40

45

50

2

mises the calculation. For example, a widely used bond
value table has discrete values for bond yield to two
decimal places and the interest rate is given in one-
eighth of one percent increments. The use of tables
with this limited accuracy could lead to errors of sev-
eral thousands of dollars in a 50 million dollar bond is-
sue.

Another disadvantage of using tables is the require-
ment that the user must have a working knowledge of
both the problem area and the mathematical formulas
to set up the problem in a specific manner before the
tables are applicable. Even then, it is often necessary to
take a reciprocal or multiply by a constant before the

.answer is usable. This limits the use of the table to only

those with a certain level of expertise in the problem
area. Thus, one who performs a great variety of busi-
ness calculations, from asset depreciation to sale fore-

casting must have: (1) an expensive collection of spe-

cial purpose calculators; or (2) a library of tables close
at hand; or (3) the mathematical and financial exper-
tise to set up and solve the problem correctly.

The principle object of this invention is to provide a
general purpose business calculator that has vastly
greater capability and flexibility than conventional
business calculators and that is small, inexpensive and
easier to use than conventional business calculators.
This calculator was designed to incorporate into one
small calculator the capability of performing the major-
ity of the calculations used in the many disciplines of
business and performing these calculations with up to
ten-digit accuracy. It replaces the special calculators
designed for banking, or accounting, or finance, or real
estate and other businesses and eliminates the need for
all commonly used financial tables. It also allows the
user to make ‘inter-disciplinary analysis, for example,
between real estate or bond investment programs,
quickly and with one calculator. Furthermore, with the
present invention, a sophisticated user can incorporate
the mathematical formulas of several business disci-
plines to solve a complex problem involving several dis-
ciplines.

Another object of thlS invention is to provide a small
business calculator which does not require a high level
of user expertise or a working knowledge of the prob-
lem area and the necessary mathematical formulas be-
fore the problem can be set up and solved. Keys relat-
ing to a general class of problems are grouped together
and designated in accordance with the generally ac-
cepted business symbols (e.g., { for interest per period,
PMT for payment per period, etc.). The key layout and
the keying sequence are such that they suggest to the
non-expert user the information necessary to solve a
given problem. For example, in solving the general
class of compound interest and annuity problems with
this calculator, the five possible variables, number of
time periods, interest rate per period, payment per pe-
riod, the present value and the future value are all lo-
cated on the top row. A user can key in any of the three
variables in the prescribed left to right sequence and
the calculator will solve either of the remaining un-
knowns as requested. This procedure does not require
any previous knowledge of compound interest or annu-
ity mathematics, and any of the five variables can be
solved without any intermediate steps. Hence, all that
is required of the user is that he be able to define the
variables of the problem, and the unique keying se-

3,863,060

3

quence of the invention will carry out the necessary
mathematical manipulation.

A calculator constructed according to the preferred
embodiment of this invention is small enough to hold
in one hand, capable of displaying data as it is entered
and a numerical result as it is calculated, and incorpo-
rates many complex functions in order to perform the
number and kind of calculations and mathematical op-
erations required for different business disciplines. The
limits of maniaturization and sophistication are real-
ized, however, if the keyboard of such a calculator be-
comes so small and so crowded with keys that the
human hand can no longer physically or conveniently
manipulate them. One solution to this problem is to re-
duce the number of functions the calculator can per-
form. A better solution is to assign more than one func-
tion to each key, thus reducing the number of keys nec-
essary to incorporate all the functional capabilities of
the calculator.

As more functions are assigned to each key, however,
the clarity of labelling a key’s various functions be-
comes important. Moreover, not only must the label-
ling clearly refer to the particular key, but the functions
each key causes the machine to perform should be éas-
ily understood and learned by the user from scanning
the keyboard labels. After learning the total capability
of the particular machine from a reading of the manual,
the user should be able to know the relationship be-
tween keys, the function(s) each key initiates and,
therefore, the operation of the machine, from his
knowledge of the keyboard itself.

The limitations of miniature calculators are over-
come in the preferred embodiment of the present in-
vention by incorporating easily interpreted, coded leg-
ends on the surface of the keyboard immediately above
certain keys to which an additional function is assigned.
The coding, not only designates the additional function
of each such key, but also refers to the prefix key which
is depressed to activate the additional function of the
key.

Some conventional business calculators have a day
between date function, but do not check for improper
date entries (e.g., 32nd of June) or compensate for the
extra day in a leap year. The present invention auto-
matically checks for improper date entries and com-
pensates for the extra days in leap years in all number-
of-days calculations between 1900 A.D. and 2100 A.D.
Furthermore, the present invention has the unique ca-
pability of determining a future or past date with com-
pensation for leap years given the number of days
away.

Conventional business calculators have very compli-
cated procedures for establishing a trend line from a set
of periodic data points. In the existing prior art, the
user enters the data points and is given the value of the
y intercept and the slope of the straight line that best
fits the data points (hereinafter referred to as the best
fit line). In order to forecast future values, the user had
to multiply the slope by the future time period and add
the result to the value of the y intercept to get the de-
sired future value.

The present calculator is capable of determining a
best fit line from a set of data points and, without any
intermediate steps or interpolation, of providing ordi-
nal values on the best fit line at any point on the time
axis. This calculator can also extrapolate either single
or multiple time periods into the past or the future.

20

25

30

40

45

50

55

60

65

4

Hence, the user can either request the ordinal value at
any time period up to 10 digits long (e.g., —2.5, 0,
7.53452) or utilize the feature which automatically cal-
culates the ordinal value for single time period incre-
ments.

Conventional business calculators for bond price and
bond yield calculations have a manual switch to initiate)
different bond price and bond yield algorithms for
bonds maturing in less than 181 days (these are consid-
ered as notes rather than bonds). The present calcula-
tor has an automatic feature to check the maturity pe-
riod and initiate the proper algorithm. The algorithms
traditionally used in conventional business calculators
to solve bond price and bond yield are very complex
and require extensive hardware capability. This has
made these calculators large, complicated, and expen-
sive. In the present calculator, two new algorithms re-
quiring significantly less hardware for bond price and
bond yield calculations are used to allow the incorpora-
tion of these two bond calculations in a small, general
purpose calculator at a fraction of the special bond cal-
culator price.

Conventional business calculators designed to calcu-
late accumulated mortgage interest and remaining
principal on a mortgage can give the cumulative totals
up to a given time period. However, it is often neces-
sary to determine the accumulated mortgage interest
and the cumulative principal paid during a specific time
period. This is not possible with prior art caiculators
without making two separate calculations and then tak-
ing the difference. The present invention permits the
user to find the amount of mortgage interest paid dur-
ing any specified time period, as well as the remaining
principal in one step. Thus, this calculator can for ex-
ample automatically calcuiate either the interest paid
during the past year or the interest paid during the sixth
through the tenth years.

Conventional business calculators with discount cash
flow capability discount the entire stream of expected
cash flow and solve for the rate of return of the invest-
ment. This provides for a summary analysis of the cash
producing life span of an asset, but does not provide
any interim information on the repayment of the origi-
nal investment. The present calculator has a discount
cash flow capability that discounts each cash flow and
maintains a running total of the outstanding amount of
the original investment. Hence, when the outstanding
balance becomes zero, or greater, the user will know
the number of periods before the investment is re-
couped.

In the past discounted note calculations were made
by employing discount note tables where the dis-
counted interest rate is given at 0.05 percent incre-
ments, the discounted amount is given to six decimal
places, and the equivalent annual interest rate is given
only to four decimal places. Thus, one who wished to
find the discounted amount or to convert the dis-
counted interest rate to an equivalent annual interest
rate is faced with two limitations: (1) the discrete inter-
est value and, hence, the need for interpolation to ob-
tain the discounted interest rate; and (2) the four deci-
mal place accuracy of the equivalent annual interest
rates. Both of these aforementioned limitations can
have a sizable effect on large sum calculations.

In some money markets outside the United States, a
365 day year is used for interest bearing transactions.
This makes it necessary for an international investor to

3,863,060

5

make extra calculations to convert a given interest rate
from a 360 day basis to a 365 day basis or vice versa.
“Thus, it would be very helpful for an international in-
vestor to have the capability of finding the equivalent
interest for either interest bearing period.

The present calculator replaces the discount note ta-
bles and performs the calculations related to dis-
counted notes without being limited to discrete dis-
counted interest rates and is accurate to ten digits. It
automatically calculates the discounted amount and
the equivalent annual interest rate to ten digit accuracy
for both the 360 day year and the 365 day year which
enables prompt evaluation of interest bearing instru-
ments in different money markets.)

Conventional business calculators with arithmetic
mean and standard deviation capability are very re-
stricted in their performance. In most cases, to find the
standard deviation, the user must first find the variance
from the sum of the squares of the input data and then
take the square root of the variance to find the standard
deviation. Also, once the data is entered and the arith-
metic mean calculation is made, it is not possible to add
or remove a data point to evaluate the effect on the
arithmetic mean and the standard deviation without én-
tering all the data points and performing the calcula-
tions over again.

The present calculator computes both the arithmetic
mean and the standard deviation automatically from
the input data. Furthermore, once the arithmetic mean
and the standard deviation are calculated, the present
invention permits the user to add or remove input data
values from the original set of data and calculate a new
arithmetic mean and standard deviation without re-
entering all the input values.. Hence, this machine is
highly interactive and permits the user to measure the
influence of hypothetical inputs on the existing data.

The present calculator also has the capability for de-
termining a depreciation schedule based on the sum-of-
the-digit depreciation method. Given the life of an asset
and the depreciable amount, this calculator computes
the depreciation for any requested period and the re-
maining book value to be depreciated. Furthermore,
the user can find the same information for all subse-
quent periods to set up a depreciation schedule.

In order to implement the extended capability and
flexibility provided by this calculator, new algorithms
were developed requiring less hardware to solve com-
plex problems. A new algorithm using internal transfor-
mations was developed to solve for the interest in the
present value of an annuity and in the future value of
an annuity. This same algorithm also solves for the ef-
fective annual percentage rate from the so-called “add-
on” rate. Thus, this one algorithm has made it possible
for a user to solve any of these three inherently differ-
ent interest problems without having to identify the
problem. The present calculator. automatically iden-
tifes the type of interest problem from the prescribed
left to right keying sequence of the relevant data, and
the input data is then converted to a form acceptable
to the new algorithm.

Another new algorithm was also developed to reduce
the complexity of the bond price and bond yield prob-
lem (and the solution thereof) so as to make this prob-
lem.solvable using only five registers. This new algo-
rithm uses an explicit term that eliminates the need for
a series of summations, which would otherwise require
substantially more hardware.

20

25

30

35

45

50

55

60

65

6

The algorithms for performing the functions of this
calculator are stored in a read-only memory circuit in-
cluding seven serial-address in, serial-instruction out
read-only memories regulated by a control and timing
circuit. This control and timing circuit includes a mi-
croprogrammed controller, which receives status con-
ditions from throughout the calculator and sequentially
outputs signals to control the flow of data. The control
and timing circuit also scans the keyboard to obtain a
six-bit read-only memory address, which is generated at
the keyboard each time a key is actuated as required to
initiate -one or more algorithms for performing the
functions associated with the actuated key.

Information from the addressed read-only memory is
transmitted serially to an arithmetic and register circuit
where a serial, binary-coded decimal (BCD) adder/-
subtractor performs the basic computations. The re-
sults of the computations are transmitted to registers in
this circuit where they are either stored temporarily or
outputted via a seven-segment, 15 -digit, LED display.

DESCRIPTION OF THE DRAWINGS

FIG. 1 is a top view of a business calculator according
to. the preferred embodiment of the invention.

FIG. 2 is'a block diagram of the calculator of FIG: 1.

FIG. 3 is' a waveform diagram illustrating the timing

sequence of the interconnecting busses and lines of

FIG. 2.

FIG. 4 is a block diagram of the control and timing
circuit of FIG. 2. .

FIG. 5 is a more detailed block diagram of the key-
board scanning circuitry of FIG. 4. '

FIG. 6 is a block diagram of one of ROM’s 0-6 of
FIG. 2.

FIG. 7 is a waveform diagram illustrating a typical ad-
dress signal and a typical instruction signal.

FIG. 8 is a timing diagram illustrating the important
timing points for a typical addressing sequence.

FIG. 9 is a waveform diagram illustrating the word
select signals generated in the control and timing cir-
cuit of FIGS. 2 and 4 and in ROM’s 0-6 of FIGS. 2 and
6.

FIG. 10 is a block diagram of the arithmetic and reg-
ister circuit of FIG. 2.

FIG. 11 is a path diagram of the actual data paths for
the registers A-F and M of FIG. 10.

FIG. 12 is a waveform diagram illustrating the output
signals for the display decoder outputs A-E of FIGS. 2,
10, and 11.

FIG. 13 is a waveform diagram illustrating the actual
signals on the display decoder outputs A-E of FIGS. 2,
10, and 11 when the digit 9 is decoded.

FIG. 14 is a waveform diagram illustrating the timing
of the START signal generated by the display decoder
of FIG. 10.

FIG. 15 is a schematic diagram of the clock driver of
FIG. 2.

FIG. 16 is a waveform diagram illustrating the timing
relationship between the input and output signals of the
clock driver of FIG. 15.

FIG. 17 is a logic diagram of the anode driver of FIG.
2.
FIG. 18 is a wayeform diagram illustrating the timing
relationship between the input, output, and other sig-
nals of the anode driver of FIG. 17.

3,863,060

7

FIG. 19 is a schematic diagram of the basic inductive
drive circuit for one of the LED’s employed in the LED
display of FIG. 2.

FIG. 20 is a waveform diagram illustrating the timing
relationship between the decimal point drive signals for
the LED display of FIG. 2.

FIG. 21 is a schematic diagram of the inductive drive
circuit for one digit in the LED display of FIG. 2.

FIG. 22 is a logic diagram of the cathode driver of
FIG. 2. :

FIG. 23 is a top view of a metal strip employed in the
keyboard input unit of FIGS. 1 and 2.

FIG. 24 is a side view of the metal strip of FIG. 23.

FIG. 2§ is a force-deflection curve for a typical key
in the keyboard input unit of FIGS. 1 and 2.

FIG. 26 is a schematic diagram of the LED display of
FIGS. 1 and 2 and the inductive drive circuits therefor.

FI1G. 27 is a schematic diagram of one segment of the
LED display of FIG. 26.

FIG. 28 is an equivalent piecewise-linear model for
the circuitry of FIG. 27. .

FIG. 29 is a waveform diagram illustrating the induc-
tor current and LED anode voltages in the circuitry of
FIG. 27.

FIG. 30 is a path diagram illustrating the possible
transfer paths between ROM’s 0-6 of FIG. 2.

FIG. 31 is a flow diagram of the display wait loop em-
ployed in the calculator of FIGS. 1 and 2.

FIG. 32 is a flow diagram of an interest algorithm em-
ployed in the calculator of FIGS. 1 and 2.

FIG. 33 is a flow diagram of a price of a bond algo-
rithm employed in the calculator of FIGS. 1 and 2.

FIG. 34 is a flow diagram of a yield to maturity of a
bond algorithm employed in the calculator of FIGS. 1
and 2.

FIGS. 35A and B comprise a flow diagram of a date
algorithm employed in the calculator of FIGS. 1 and 2.

DESCRIPTION OF THE PREFERRED
EMBODIMENT

SYSTEM ARCHITECTURE

Referring to FIGS. 1 and 2, there is shown a pocket-
size electronic calculator 10 including a keyboard input
unit 12 for entering data and instructions into the cal-
culator and a seven-segment LED output display unit
14 for displaying each data entry and the results of cal-
culations performed by the calculator. As shown in
FIG. 2, calculator 10 also includes an MOS control and
timing circuit 16, an MOS read-only memory circuit 18
(including ROM’s 0-6), an MOS arithmetic and regis-
ter circuit 20, a bipolar clock driver 22, and a solid
state power supply unit 24.

The three MOS circuits are two-phase dynamic
MOS/LSI circuits with low thresholds allowing compat-
ibility with TTL bipolar circuits and allowing extremely
low-power operation (less than 100 milliwatts for all
three circuits). They are organized to process fourteen-
digit BCD words in a digit-serial, bit-serial manner. The
maximum bit rate or clock frequency is 200 kilohertz,
which gives a word time of 280 microseconds (permit-
ting a floating point addition to be completed in 60 mil-
liseconds).

Control and timing circuit 16, read-only memory cir-
cuit 18, and arithmetic and register circuit 20 are tied
together by a synchronization (SYNC) buss 26, an in-
struction (I,) buss 28, a word select (WS) buss 30, an
instruction address (1) line 32, and a carry line 34. All

15

20

25

30

35

40

45

50

55

60

65

8

operations occur on a 56 bit (bgbss) word cycle (14
four-bit BCD digits). The timing sequence for the inter-
connecting busses and lines 26-34 is shown in FIG. 3.

The SYNC buss 26 carries synchronization signalis
from control and timing circuit 16 to ROM’s 0-6 in
read-only memory circuit 18 and to arithmetic and reg-
ister circuit 20 to synchronize the calculator system. It
provides one output each word time. This output aiso
functions as a ten-bit wide window (by—bsy) during
which I, buss 28 is active.

The 1, buss 28 carries ten-bit instructions from the ac-
tive ROM in the read-only memory circuit 18 to the
other ROM’s, control and timing circuit 16, and arith-
metic and register circuit 20, each of which decodes
the instructions locally and responds to or acts upon
them if they pertain thereto and ignores them if they do
not. For instance, the ADD instruction affects arithme-
tic and register circuit 20 but is ignored by control and
timing circuit 16. Similarly, the SET STATUS BIT 5 in-
struction sets status flip-flop 5 in control and timing cir-
cuit 16 but is ignored by arithmetic and register circuit
20.

The actual implementation of an instruction is de-
layed one word time from its receipt. For exampie, an
instruction may require the addition of digit 2 in two of
the registers in arithmetic and register circuit 20. The
ADD instruction would be received by arithmetic and
register circuit 20 during bit times b45—bs, of word time
N and the addition would actually occur during bit
times bg — b,i of word time N <+ 1. Thus, while one in-
struction is being executed the next instruction is being
fetched.

The WS buss 30 carries an enable signal from control
and timing circuit 16 or one of the ROM’s in read-oniy
memory circuit 18 to arithmetic and register circuit 20
to enable the instruction being executed thereby. Thus,
in the example of the previous paragraph, addition oc-
curs only during digit 2 since the adder in the arithme-
tic and register circuit 20 is enabled by WS buss 30 only
during this portion of the word. When WS buss 30 is
low, the contents of the registers in arithmetic and reg-
ister circuit 20 are recirculated unchanged. Three ex-
amples of WS timing signals are shown in FIG. 3. In the
first example, digit 2 is selected out of the entire word.
In the second example, the last eleven digits are se-
lected. This corresponds to the mantissa portion of a
floating point word format. In the third example, the
entire word is selected. Use of the word select feature
allows selective addition, transfer, shifting or compari-
son of portions of the registers within arithmetic and
register circuit 20 with only one basic ADD, TRANS-
FER, SHIFT, or COMPARE instruction. Some custom-
ization in the ROM word select fields is available via
masking options.

The I, line 32 sérially carries the addresses of the in-
structions to be read from ROM’s 0-6. These addresses
originate from control and timing circuit 16, which
contains an instruction address register that is incre-
mented each word time unless a JUMP SUBROUTINE
or a BRANCH instruction is being executed. Each ad-
dress is transferred to ROM’s 0-6 during bit times
biy~bss and is stored in an address register of each
ROM. However, only one ROM is active at a time, and
only the active ROM responds to an address by output-
ting an instruction on the I, line 28. Control is trans-
ferred between ROM’s by a ROM SELECT instruction.
This technique allows a single eight-bit address. pius

3,863,060

9

eight special instructions, to address up to eight ROM’s
of 256 words each.

‘The carry line 34 transmits the status of the carry
output of the adder in arithmetic and register circuit 20
to control and timing circuit 16. The control and timing
circuit uses this information to make conditional
branches, dependent upon the numerical value of the
contents of the registers in arithmetic and register cir-
cuit 20,

Control and tlmmg circuit 16 is orgamzed to scan a
five-by-eight matrix of switches in search of an inter-
connection that designates actuation of a key. Any type
of metal-to-metal contact may be -used as a key.
Bounce problems are overcome by programmed lock-
outs in the key entry routine. Each key has an associ-
ated six-bit code.

A power on circuit 36 in power supply unit 24
supplies a signal forcing the calculator to start up in a
known condition when power is supplied thereto.
Power is supplied to the calculator when the on-off
switch of keyboard input unit 12 (see FIG. 1) is moved
to the on position.

The primary outputs of the calculator are five output
lines 38 connected between a display decoder of arith-
metic and register circuit 20 and an anode driver of
output display unit 14. Data for a seven-segment dis-
play plus a decimal point is time-multiplexed onto these
five output lines. A start line 40 connected between the
display decoder of arithmetic and register circuit 20
and a cathode driver of output dlsplay unit 14 indicates
when the digit 0 occurs.

CONTROL AND TIMING CIRCUIT

Referring now to FIG. 4, control and timing circuit
16 contains the master system counter 42, scans the
keyboard 12, retains status information about the sys-
tem or the condition of an algorithm, and generates the
next ROM address. It also originates the. subclass of
Word Select signals which involve the pointer 44, a
four-bit counter that points to one of the register digit
positions.

The control unit of control and tlmmg circuit 16 is a
microprogrammed controller 46 comprising.a 58 word
(25 bits per word) control ROM, which receives quali-
fier or status conditions from throughout the calculator
and sequentially outputs signals to.control the flow of
data. Each bit in this control ROM either corresponds
to a single control line or is part of a group of N bits en-
coded into 2% mutually exclusive control lines and de-
coded external to the control ROM. At each phase 2
clock, a word is read from the control ROM as deter-
mined by its present address. Part of the output is fed
back to become the next address.

Several types of qualifiers are checked. Since most
-commands are issued only at certain bit times during
the word cycle, timing qualifiers are necessary. This
means the control ROM may sit in a wait loop until the
appropriate timing qualifier comes true, then move to
the next address to issue a command. Other qualifiers
are the state. of the pointer register, the PWO (power
on) line, the CARRY flip flop, and the state of each of
the 12 status bits.

Since the calculator is a serial system based on a 56
bit word, a six-bit system counter 42 is employed for
counting to 56. Several decoders from system counter
42 are necessary. The SYNC signal is generated during
bit times bys—bsq and transmitted to all circuits in the

20

25

30

45

50

55

65

10

system (see FIG. 3). Other timing qualifiers are sent to
the microprogrammed control ROM 46 as mentioned
in the previous paragraph.

System counter 42 is also employed as a keyboard
scanner as shown in FIG. 5. The most significant three
bits of system counter 42 go to a one-of-eight decoder
48, which sequentially selects one of the keyboard row
lines.50.-The least significant three bits of the system
counter count modulo seven and go to a one-of-eight
multiplexor 52, which sequentially selects one of the
keyboard column lines 54 (during sixteen clock times
no key is scanned). The multiplexor output is called the
key down signal. If a contact is made at any intersection
point in the five-by-eight matrix (by depressing a key),
the key down signal will become high for one state of
system counter 42 (i.e., when the appropriate row and
column lines are selected). The key down signal will
cause that state of the system counter to be saved in
key code buffer 56. This six-bit code is then transferred
to the ROM address register 58 and becomes a starting
address for the program which services the key that was
down (two leading 0 bits are added by hardware so an
eight-bit address exists). Thus, during each state of sys-
tem counter 42, the decoder-multiplexor combination
48 and 52 is looking to see if a specific key is down. If
it is, the state of the system counter becomes a starting
address for execution of that key function (note that 16
of the 56 states are not used for key codes). By sharing
the function of the system counter and using a key-
board scanning technique directly interfaced to the
MOS circuitry, circuit complexity is reduced signifi-
cantly. -

A 28 bit shift register which circulates twice each 56
bit word time, is employed in control and timing circuit
16. These 28 bits are divided into three functional
groups: the main ROM address register 58 (eight bits),
the subroutine return address register 60 (eight bits),
and the status register 62 (twelve bits).

The: main ROM’s 0-6 each contain 256 (ten bit)
words, thereby requiring an eight-bit address. This ad-
dress circulates through a serial adder/subtractor 64
and is incremented during bit times b,~bs, (except in
the case of branch and jump-subroutine instructions for
which the eight bit address field of the ten-bit instruc-
tion .is substituted for the current address). The next
address is transmitted over the I, line 32 to each of the
main ROM’s 0-6 during bit times b,g—by.

The Status register 62 contains twelve bits or flags
which are used to keep track of the state of the calcula-
tor. Such information as whether the decimal point has
been hit, the minus sign set, etc. must be retained in the
status bits. In each case the calculator remembers past
events by setting an appropriate status bit and asking
later if it is set. A yes answer to a status interrogation
will set the carry flip-flop 66 as indicated by control sig-
nal IST in FIG. 4. Any status bit can be set, reset, or in-
terrogated while circulating through the adder 64 in re-
sponse to the appropriate instruction.

The instruction set allows one leve! of subroutine
call. The return address is stored in the eight-bit return
address register 60. Execution of a JUMP subroutine
stores the incremented present address into return ad-
dress register 60. Execution of the RETURN instruc-
tion retrieves this address for transmission over I, line
32. Gating is employed to interrupt the 28 bits circulat-
ing in the shift register 58-62 for insertion of addresses

3,863,060

11
at the proper time as indicated by the JSB control sig-
nal in FIG. 4.

An important feature of the calculator system is the
capability to select and operate upon a single digit or
a group of digits (such as the exponent field) from the
fourteen digit registers. This feature is implemented
through the use of a four-bit pointer 44 which points at
the digit of interest. Instructions are available to set, in-
crement, decrement, and interrogate pointer 44. The
pointer is incremented or decremented by the same se-
rial adder/subtractor 64 used for addresses. A yes an-
swer to the instruction “‘is pointer N will set the
carry flip-flop 66 via control signal IPT in FIG. 4.

The word select feature was discussed above in con-
nection with FIGS. 2 and 3. Some of the word select
signals are generated in control and timing circuit 16,
namely those dependent on pointer 44, and the remain-
der in the main ROM’s 0-6. The pointer word select
options are (1) pointer position only and (2) pointer
position and all less significant digits. For instance, as-
sume the mantissa signs of the numbers in the A-and C
registers of arithmetic and register circuit 20 were to be
exchanged. The pointer would be set to position 13
(last position) and the A EXCHANGE C instruction
with a “pointer position™ word select field would be
given. If all of the word except the mantissa signs were
to be exchanged, the A EXCHANGE C instruction
would be given with the pointer set at 12 and the word
select field set to pointer and less significant digits. The
control and timing circuit word-select output 30 is or-
tied with the ROM word-select output 30 and transmit-
ted to arithmetic and register circuit 20.

Any carry signal out of the adder in arithmetic and
register circuit 20, with word select also high, will set
carry flip-flop 66. This flip-flop is interrogated during
the BRANCH instruction to determine if the existing
address should be incremented (yes carry) or replaced
by the branch address (no carry). The branch address
is retained in an eight-bit address buffer 68 and gated
to I, line 32 by the BRH control signal.

The power-on signal is used to synchronize and pre-
set the starting conditions of the calculator. It has two
functions, one of which is to get the address of control
ROM 46 set to a proper starting state and the other of
which is to get the system counter 42 in control and
timing circuit 16 synchronized with the counter in each
main ROM 0-6. As the system power comes on, the
PWO signal is held at logic 1 (0 volts in this system) for
at least 20 milliseconds. This allows system counter 42
to make at least one pass through bit times bys—bs, when
SYNC is high thereby setting main ROM 0 active and
the rest of the ROM’s inactive. When PWO goes to
logic 0 (+6 volts), the address of control ROM 46 is set
to 000000 where proper operation can begin.

READ-ONLY MEMORY CIRCUIT

The ROM’s 0-6 in read-only memory circuit 18 store
the programs for executing the functions required of
the system. Since each ROM contains 256 ten-bit
words, there are 1,536 words or 15,360 bits of ROM.
A block diagram of each of the ROM’s 0-6 is shown in
FIG. 6.

The basic operation of each ROM is a serial-address
in, a serial-instruction out. During every 56 bit word
time the address comes in, least significant bit first from
bit byy through bit by. Every ROM 0-6 in the system re-
ceives this same eight-bit address and from bit time b,;

20

25

30

35

40

45

50

55

60

65

12

through bs, tries to output onto I, line 28. However, a
ROM enable (ROE) flip-flop 70 in each ROM insures
that no more than one ROM actually sends an instruc-
tion on I; line 28 at the same time.

All output signals are inverted so that the steady-state
power dissipation is reduced. The calculator circuits
are P-channel MOS. Thus, the active signals that turn
on a gate are the more negative. This is referred to as
negative logic, since the more negative logic level is the
logic 1. As mentioned above, logic 0 is +6 volts and
logic 1 is O volts. The signais on I, and I, are normally
at logic 0. However, when the output buffer circuits are
left at logic O they consume more power. A decision
was therefore made to invert the signals on the [, and
I, outputs and re-invert the signals at all inputs. Thus,
signals appear at the I, and I, outputs as positive logic.
The oscilloscope pattern that would be seen for instruc-
tion 1101 110 011 from state 11 010 101 is shown in
FIG. 8.

The serial nature of the calculator circuits requires
careful synchronization. This synchronization is pro-
vided by the SYNC pulse, generated in controi and tim-
ing circuit 16 and lasting for bit times b4—bs,. Each
ROM has its own 56 state counter 72, synchronized to
the system counter 42 in control and timing circuit 16.
Decoded signals from this state counter 72 open the
inpht to the address register 74 at bit time by, clock [,
out at bit time b5 and provide other timing control sig-
nals.

As the system power comes on, the PWO signal is
held at 0 volts (logic 1) for at least 20 milliseconds. The
PWO signal is wired (via a masking option) to set ROM
Output Enable (ROE) flip-flop 70 on main ROM 0 and
reset it on all other ROM’s. Thus when operation be-
gins, ROM 0 will be the only active ROM. In addition,
control and timing circuit 16 inhibits the address out-
put during start-up so that the first ROM address will
be zero. The first instruction must be a JUMP SUB-
ROUTINE to get the address register 58 in control and
timing circuit 16 loaded properly.

FIG. 7 shows the important timing points for a typical
addressing sequence. During bit times by~0y4 the ad-
dress is received serially from control and timing circuit
16 and loaded into address register 74 via [, line 32.
This address is decoded and at bit time b, the seiected
instruction is gated in parallel into the I, register 76.
During bit times b,s—bs4 the instruction is read seriaily
onto I, buss 28 from the active ROM (i.e., the ROM
with the ROM enable flip-flop set).

Control is transferred between ROM’s by a ROM SE-
LECT instruction. Effectively this instruction will turn
off ROE flip-flop 70 on the active ROM and turn on
ROE flip-flop 70 on the selected ROM. Implementa-
tion is dependent upon the ROE flip-flop being a mas-
ter-slave flip-flop. In the active ROM, the ROM SE-
LECT instruction is decoded by a ROM select decoder
78 at bit time 44, and the master portion of ROE flip-
flop 70 is set. The slave portion of ROE flip-flop 70 is
not set until the end of the bit time (b55). In the inactive
ROM’s the instruction is read serially into the I, register
76 during bit times bys—bs4 and then decoded, and the
ROE flipflop 70 is set at bit time bss in the selected
ROM. A masking option on the decoding from the least
significant three bits of the I, register 76 ailows each
ROM to respond only to its own code.

The six secondary word-select signals are generated
in the main ROM’s 0-6. Only the two word-select sig-

3,863,060

13

nals dependent upon the POINTER come from control
and timing circuit 16. The word select of the instruc-
tion is retained in the word select register 80 (also a
master-slave). If the first two bits are 01, the instruction
is of the arithmetic type for which the ROM must gen-
erate a word select gating sighal. At bit time by the next
three bits are gated to the slave and retained for.the
next word time to be decoded into one of six signals.
The synchronization counter 72 provides timing infor-
mation to the word select decoder 82. The output WS
signal is gated by ROE flip-flop 70 so only the active
ROM can output on WS line 30, which is OR-tied with
all other ROM’s and also control and timing circuit 16.
As discussed above, the WS signal goes to arithmetic
and register circuit 20 to control the portion of a word
time an instruction is active.

The six ROM generated word select signals used in
the calculator are shown in FIG. 9. ROM’s 0-6 output
a one bit-time pulse on I, buss 28 at bit time by, to de-
note the exponent minus sign time. This pulse is used
in the display decoder of arithmetic and register circuit
20 to convert a 9 into a displayed minus sign. The time
location of this pulse is a mask option on the ROM.

ARITHMETIC AND REGISTER CIRCUIT

Arithmetic and register circuit 20 shown in FIG. 10
provides the arithmetic and data storage function for
the calculator. It is controlled by the WS, I, and SYNC
lines 30, 28, and 26, respectively; receives instructions
from ROM’s 0-6 over the I, line 28; sends information
back to control and timing circuit 16 via the CARRY
line 34; partially decodes the dispaly information be-
fore transmitting it via output lines 38 to the anode
driver of output display unit 14; and provides a START
pulse to the cathode driver of output display unit 14 to
synchronize the display.

Arithmetic and register circuit 16 contains seven,
fourteen-digit (56 bit) dynamic registers A~F and M
and a serial BCD adder/subtractor 84. Actual data
paths, not shown in FIG. 10 due to their complexity,
are discussed below and shown in FIG. 11. The power
and flexibility of an instruction set is determined to a
great extent by the variety of data paths available. One
of the advantages of a serial structure is that additional
data paths are not very costly (only one additional gate
per path). The structure of arithmetic and register cir-
cuit 20 is optimized for the type of algorithms required
by the calculator.

The seven registers A-F and M can be divided into
three groups: the working registers A, B, and C with C
also being the bottom register of a four-register stack;
the next three registers D, E, and F in the stack; and a
separate storage register M communicating with the
other registers through register C only. In FIG. 11,
which shows the data paths connecting all the registers
A-F and M, each circle represents the fifty-six bit regis-
ter designed by the letter in the circle. In the idle state
(when no instruction is being executed in arithmetic
and register circuit 20) each register continually circu-
lates since with dynamic MOS registers information is
represented by a charge on a parasitic capacitance and
must be continually refreshed or lost. This is repre-
sented by the loop re-entering each register.

Registers A, B, and C can all be interchanged. Either
register A or C is connected to one adder input, and ei-
ther register B or C to the other. The adder output can
be directed to.either register A or C. Certain instruc-

10

20

25

30

35

45

50

55

60

65

14
tions can generate a carry via carry flip-flop 85 which
is transmitted to control and timing circuit 16 to deter-
mine conditional branching. Register C always holds a
normalized version of the displayed data.

In the stack formed by registers C,D.E, and F a
ROLL DOWN instruction is executed by the following -
transfers: F— E - D C— F. A STACK UP instruc-
tion is executed by ~the following transfers:
GC— D — E —F. Thus, it is possible to transfer a reg-
ister and also let it recirculate so that in the last exam-
ple the contents of C are not lost. The structure and op-
eration of a stack such as this are further described in
copending U.S. Pat. application Ser. No. 257,606 enti-
tled IMPROVED PORTABLE. ELECTRONIC CAL-
CULATOR, filed on May 30, 1972, by David S. Coch-
ran et al, and issued as U.S. Pat. No. 3,781,820 on Dec.
25, 1973. '

In serial decimal adder/substractor 84 a correction
-(addition of 6) to a BCD sum must be made if the sum
exceeds nine (a similar correction for subtraction is
necessary). It is not known if a correction is needed
until the first three bits of the sum have been generated.
This is accomplished by adding a four-bit holding regis-
ter 86 (Ag—As;) and inserting the corrected sum into
a portion 88 (Age~Asy) of register A if a carry is gener-
ated. This holding register 86 is also required for. the
SHIFT A LEFT instruction. One of the characteristics
of a decimal adder is that non-BCD codes (i.e. 1101)
are not allowed. They will be modified if circulated
through the adder. The adder logic is minimized to save
circuit area. If four bit codes other than 0000-1001 are
processed, they will be modified. This is no constraint
for applications involving only numeric data (however,
if ASC11 codes, for instance, are operated upon, incor-
rect results will be obtained).

Arithmetic and register circuit 20 receives the in-
struction during bit times b,s~bs4. Of the ten types of in-
structions hereinafter described, arithmetic and regis-
ter circuit 20 must respond to only two types (namely,
ARITHMETIC & REGISTER instructions and DATA
ENTRY/DISPLAY instructions). ARITHMETIC &
REGISTER instructions are coded by a 10 in the least
significant two bits of I, register 90. When this combi-
nation is detected, the most significant five bits are
saved in I, register 90 and decoded by instruction de-
coder 92 into one of 32 instructions.

The ARITHMETIC & REGISTER instructions are
active or operative only when the Word Select signal
(WS) generated in one of the ROM’s 0-6 or in control
and timing circuit 16 is at logic one. For instance, sup-
pose the instruction “A+C — C, mantissa with sign
only” is called. Arithmetic and register circuit 20 de-
codes only A+C — C. It sets up registers A and C at the
inputs to.adder 84 and, when WS is high, directs the
adder output to register C. Actual addition takes place
only during bit times by, to by; (digits 3-13) since for
the first three digit times the exponent and exponent
sign are circulating and are directed unchanged back to
their original registers. Thus, the word select signal is
an “instruction enable” in arithmetic and register cir-
cuit 20 (when it is at logic 1, instruction execution
takes place, and when it is at logic 0, recirculation of
all registers continues).

The DATA ENTRY/DISPLAY instructions, except
for digit entry, affect an entire register (the word select
signal generated in the active ROM is at logic 1 for the
entire word cycle). Some of these instructions are: up

3,863,060

15

stack, down stack, memory exchange M < C, and dis-
play on or toggle. A detailed description of their execu-
tion is given hereinafter.

For increased power savings display decoder 94 is
partitioned to partially decode the BCD data into seven
segments and a decimal point in arithmetic and register
circuit 20 by using only five output lines (A-E) 38 with
time as the other parameter. Information for seven seg-
ments (a-g) and a decimal point (dp) are time shared
on the five output lines A-E. The output wave forms
for output lines A~E are shown in FIG. 12. For exam-
ple, output line D carries the segment e information
during T, (the first bit time of each digit time) and the
segment D information during T; (the second bit time
of each digit time); and output E carries the segment
G information during T,, the segment F information
during T, and the decimal point (dp) during T4. The
actual signals which would appear if a digit 9 were de-
coded are shown in FIG. 13. The decoding is com-
pleted in the anode driver of output display unit 14 as
explained hereinafter.

The registers in arithmetic and register circuit 20
hold 14 digits comprising ten mantissa digits, the man-
tissa sign, two exponent digits, and the exponent sign.
Although the decimal point is not allocated a register
position, it is given a full digit position in the output dis-
play. This apparent inconsistency is achieved by using
both the A and B registers to hold display information.
The A register is set up to hold the displayed number
with the digits in the proper order. The B register is
used as a masking register with digits 9 inserted for
each display position that is to be blanked and a digit
2 at the decimal point location. When the anode driver
of output display unit 14 detects a decimal point code
during T,, it provides a signal to the cathode driver of
the output display unit to move to the next digit posi-
tion. One digit and the decimal point share one of the
14 digit times. The digit- 9 mask in register B allows
both trailing and leading zeros to be blanked (i.e., by
programming 9's into the B register). Use of all three
working registers for display (i.e., the C register to re-
tain the number in normalized form, the A register to
hold the number in the displayed form, and the B regis-
ter as a mask) allows the calculator to have both a
floating point and a scientific display format at the ex-
pense of only a few more ROM states.

The display blanking is handled as follows. At time T,
the BCD digit is gated from register A into display buf-
fer 96. If this digit is to be blanked, register B will con-
tain a 9 (1001) so that at T, the end bit (By;) of the B
register will be a one (an eight would therefore also
work). The input to display buffer 96 is OR-ED with
B, and will be set to 1111 if the digit is to be blanked.
The decimal point is handled in a similar way. A 2
(0010) is placed in register B at the decimal point loca-
tion. At time T, the decimal point buffer flip-flop is set
by Bo;. Any digit with a one in the second position will
set the decimal point (i.e., 2, 3, 6, or 7).

Display decoder 94 also applies a START signal to
line 40. This signal is a word synchronization pulse,
which resets the digit scanner in the cathode driver of
output display unit 14 to assure that the cathode driver
will select digit 1 when the digit 1 information is on out-
puts A, B, C, D, and E. The timing for this signal is
shown in FIG. 14.

One other special decoding feature is required. A
minus sign is represented in tens complement notation

20

25

30

35

45

50

55

60

65

16

or sign and magnitude notation by the digit 9 in the sign
location. However, the display must show only a minus
sign (i.e., segment g). The digit 9 in register A in digit
position 2 (exponent sign) or position 13 (mantissa
sign) must be displayed as minus. The decoding cir-
cuitry uses the pulse on I, buss 28 at bit time by, (see
FIG. 3) to know that the digit 9 in digit position 2 of
register A should be a minus and uses the SYNC pulse
to know that the digit 9 in digit position [3 of register
A should also be a minus. The pulse on I, buss 28 at bit
time by, can be set by a mask option, which allows the
minus sign of the exponent to appear in other locations
for other uses of the calculator circuits.

CLOCK DRIVER

The bipolar clock driver 22, one phase of which is
shown in FIG. 15, requires less than 25 milliwatts and
can drive loads up to 300 picoforads with a voltage
swing of +7 to —14 volts. An ENABLE input 98 allows
both outputs Q; and Q; to be held to V¢, the MOS
Logic O state. This is an effective means of strobing the
clock. During dc operation, the transistor pair Q,-Q;
allows only one of the output transistor pairs Qs;—Qg or
Q-—Qg to conduct. Diode Dj prohibits conduction from
transistor Qg to transistor Qg during transient opera-
tion, Thus, the only possible transient short circuit cur-
rent must flow from transistor Qs to transistor Q,. How-
ever, the limited current handling capability of Qs (a
lateral PNP) limits this current to less than 5 milliamps
peak. The input signals for clock driver 22 are gener-
ated on the anode driver of output display unit 14, and
the outputs of the clock driver go to each of the MOS
circuits in the system. The timing relationships are
shown in FIG. 16.

ANODE DRIVER

As discussed above, the display information s par-
tially decoded in arithmetic and register circuit 20 and
completely decoded into seven segment plus decimai
point signals in the bipolar anode driver of output dis-
play unit 14. The anode driver also includes the basic
clock generator for the system and a circuit for detect-
ing low battery voltage to turn on all the decimal
points. Such a circuit is shown and described in co-
pending U.S. Pat. application Ser. No. 206,407 entitled
LOW BATTERY VOLTAGE INDICATOR FOR A
PORTABLE DIGITAL ELECTRONIC INSTRU-
MENT, filed on Dec. 9, 1971, by Thomas M. Whitney
and now abandoned. A logic diagram of the anode
driver is shown in FIG. 17.

The clock generator uses an external LC series cir-
cuit to set the oscillator frequency. The advantages of
an LC series circuit to set the frequency are: (1) the
components can be specified to up to 2 percent toler-
ance; and (2) a crystal can be connected to the same
external pin to set the frequency to 0.001 percent for
timing applications.

The square-wave oscillator frequency (all times mn
this section will be referred to an 800 KHz oscillator
frequency, which translates to a 200 KHz clock for the
calculator, the actual frequency being somewhat less)
is divided by flip-flop BL to 400 KHz. Flip-flops 81 and
B2 are clocked off alternate phases of flip-flop Bl to
provide two 200 KHz square waves as shown in FIG.
18. Flip-flop B3 is clocked from flip-flop B2 and in turn
clocks flip-flop B4 to provide further count-down of
the basic clock frequency. The two-phase clock signals

3,863,060 .

17

Q, and Q, are generated from flip-flops BL and B1 and
the 800 KHz oscillator -100. They are on for 625 nsec
and separated by 625 psec as shown in FIG. 18. One
other periodic signal is derived in the anode driver.
Once each digit time a signal (counter-clock) is sent to
the cathode driver of output display unit 14 (the trail-
ing edge of this signal will step the display to the next
digit).

The display consists of fifteen characters while the

basic calculator word cycle consists of fourteen digits.’

The extra character is the decimal point. As explained
above, a BCD two is placed in register B at the digit po-
sition of the decimal point. The display decoder 94 in
arithmetic and register circuit 20 indicates this by a sig-
nal on outputs B and E during bit time T, (see FIG. 12),
When this condition is decoded by the anode driver,
the decimal point is excited and an extra counter clock
signal is given to step the display to the next position
(see FIGS. 18, 19, and 20). Therefore all remaining
digits in register A are displaced one digit in the dis-
play.

FIGS. 19 and 20 show the s1mphﬁed circuit and the
timing relationship for the decimal point. The timing is
critical since all the inductor current in segment b (the
last to be excited) must be decayed before the counter
clock signal is given to step to the next digit or the re-
maining current would be discharged through the
wrong digit and a faint lighting of segrent b on the
same digit with the decimal point would occur. The
decimal point insertion technique is the reason all other
seven segments are excited during the first half of the
digit time. The decimal point charging time is one-half
that of the other segments The decimal point segment
gets the same current in one-half the time and is one-
half as bright as the other segments.

An inductive circujt method of driving the llght-
emitting diodes is employed. Basically the method in-
volves using the time it takes current to build up in an
inductor to limit current, rather than using a resistor as
is normally done with LED read-outs. This saves power
since the only lossy components in the drive system are
the parasitic inductor and transistor resistances. The
drive circuit for one digit is shown in FIG. 21. Assum-
ing the cathode transistor switch T, is closed, an anode
switch T, is closed for 2.5 usec allowing the current to
build up to a value I, along a nearly triangular wave-
form (the eartly part of an exponential buildup). When
anode switch T, is opened, the current is dumped
through the LED, decaying in about 5 usec. The an-
odes are strobed according to the sequence in FIG. 18.
The primary reason for sequentially exciting the anodes
is to reduce the peak cathode transistor current. Since
the decay time is approximately twice the buildup time,
it works out that the peak cathode current is about 2.5
times the peak current in any segment. The LED’s are
more efficient when excited at a low duty cycle. This
means high currents for short periods (80 ma. anode
current, 250 ma. cathode current). FIG. 18 also shows
the relationship between the anode strobing sequence
and the display output signals (A-E) from arithmetic
and register circuit 20.

Since the anode driver operates from the battery
voltage directly and drives the decimal point segment,
a circuit is provided that senses when the voltage drops
below a certain limit and thereupon turns on all deci-
mal points. An external pin is provided to connect a

10

5

20

25

30

35

40

45

50

55

60

65

18

tnmmmg I’eSlStOl‘ to set the voltage where the indica-
tion is to occur.

CATHODE DRIVER

The cathode driver of output display unit 14 com-
prises a fifteen position shift register for scanning the
fifteen digit display once each word time. This scanning
operation moves from digit to digit in reponse to
counter clock signals from the anode driver. Once each
word time a START signal arrives from arithmetic and
register circuit 20 to restart the procedure. A block dia-
gram is shown in FIG. 22.

KEYBOARD

The calculator employs a reliable, low-profile, low
cost keyboard with tactile feedback such as that shown
and described in copending U.S. Pat. application Ser.
No. 173,754 entitled KEYBOARD HAVING
SWITCHES WITH TACTILE FEEDBACK and filed
on'Aug. 23, 1971, by William W, Misson et al. The key-
board employs metal strips 102 with slots 104 etched
or punched out as shown in FIG. 23, leaving an area
which can be stretched to form small humps as shown
in FIG. 24. The strips are spot welded to a printed cir-

-cuit board such that orthogonal traces run under each

hump. Pressing a key makes electrical contact between
one of the horizontal strips and the corresponding ver-
tical trace. The bounce is less than one millisecond (the
calculator contains a wait loop to prevent double
entries). Extensive life testing of the keyboard indicates
more than a million cycles can be expected. Tolerances
must be maintained carefully to prevent the possibility
that a key is depressed but no contact is made and to
insure uniformity.

One of the main advantages of the keyboard is the
“overcenter’” or “fall away” feel. FIG. 25 shows a
force-deflection curve for a typical key. As can be seen
a force of about 100 grams must be exceeded before
the metal hump “breaks” through. After this critical
value the operator cannot prevent contact from being
made. Similarly when the key is released, contact is
maintained until a critical value when the hump
bounces back: Again, past a critical point the operator
cannot prevent the key from releasing. This type of ac-
tion prevents a condition known as ““teasing” in which
a key is nearly depressed and slight movement causes
multiple entries. The point on the force deflection
curve at which contact is made or released is most de-
sirably on the negative slope portion. In the calculator
it is either there or exactly at the bottom (point A in
FIG. 25), but never on the final positive slope portion.

FIG. 1 shows the layout of keyboard input unit 12
which includes a plurality of function and numeric
keys. Several of the function keys are capable of per-
forming more than one function when used in conjunc-
tion with prefix key 15. For example, function key 17
carries one legend Y* which refers to its direct func-
tion. Immediately above the key location, legend 19 in-
dicates a second function Vi, Legend 19 is color-
coded to designate not only the second function Vz,
but also to refer the user to prefix key 15 which
initializes ‘that function when depressed prior to
depressing key 17. The coloration of the body of
prefix key 15 corresponds to the coloration of all
legends, such as legend 19, for association with
of the present invention initialized by prefix key

19
15 are YTM, INTR, BOND, A%, COMPUTE,
DATE, Vz,— 3, CLEAR, and 3 —.

LED DISPLAY

As mentioned above, the inductive drive technique
employed for the LED display is inherently efficient be-
cause there are no dissipative components other than
parasitic resistances and the forward voltage drop
across saturated transistor switches. An inductive
driver like that used in the calculator is shown and de-
scribed in copending U.S. Pat. application Ser. No.
202,475 entitled LIGHT EMITTING DIODE
DRIVER, filed on Nov. 26, 1971, by Donald K. Miller,
and issued as U.s. Pat. No. 3,755,697 on Aug. 28, 1973.

The display circuitry used in the calculator is shown
in FIG. 26. It comprises an 8 X 15 array of LED’s in
which the eight rows are scanned by the anode driver
and the fifteen columns by the cathode driver. The tim-
ing for this scanning was discussed above. A simplified
circuit diagram for one segment is shown in FIG. 27.
The equivalent piecewise-linear circuit model is shown
in FIG. 28. An analysis of this model shows the induc-
tor current buildup and discharge to be nearly linear
for the parameters used in the calculator. The dischar-
getime to charge-time ratio is approximately:

Latschargel tenarge Vs = Vaaua) (Vg + Vegae) = (3.8 —
0.1)/(1.6 +0.2) =3.7/1.8 = 2.06

. FIG. 29 shows the inductor current for a basic calcu-

20

25

3,863,060

20
lator clock frequency of 175 KHz. The average LED
current can be calculated from the formula

Ave Ipgp=pulse current X duty cycle
5.88 see

7B KHz X356

_(80) (5.88) (.175)
- (2) (56)

1,4
=(§><250 ma)

=.73H ma

The worst case display power (i.e., thirteen 8's and
two minus signs) is about 110 milliwatts. FIG. 29 also
shows the ringing inherent with inductive drive.

INSTRUCTION SET

Every function performed by the caiculator is imple-

"mented by a sequence of one or more ten-bit instruc-

tions stored in ROM’s 0-6 of read-only memory circuit
18. The serial nature of the MOS calculator circuits al-
lows the instruction bits to be decoded from LSB to
MSB (right to left) serially. If the first bit is a one, the
instruction is either a subroutine jump or a conditional
branch as selected by the second bit, with eight bits left
for an address. The next largest set of instructions, the
arithmetic set, starts with a zero followed by a one
(right to left), leaving eight bits for encoded instruc-
tions. The ten different types of instructions, employed
by the calculator are shown in the table below.

" TABLE OF INSTRUCTION TYPES (X=DON'T CARE)

Type Available Instruetions

Name

Fields

. 206 (ADDRENSSICS) |

256 (ADDRESSES). ...

SJUMP SUBROUTINE.. . .

CONDITIONAL BRANCH

4
SUBROUTINIG ADDRISS '

BRANCH ADDRESS

ID 3
3 3
2 eenn 3OXB=956. .. oo ARITHMETIC/REGISTER OPERATION- WORD - o
TODE SELECT
. .
S 64 (37 used). . .oooo.o..____. STATUS OPERATIONS N 7 : B
v 3 2 ' [
SET BIT N F=00
INTERROGATE N 201
ST T _
CLEAR ALL P2 11J N =0000)
4 M
4o 64 (30 used) oo mooeeee POINTER OPERATIONS P F Y0
SET POINTER TO P F=00
DECREMENT B © ool
T =01}, _
INCREMENT P F=11}P"XXXX
4 3
B eens 64 (20used) oo ..o DATA ENTRY/DISPLAY N 7 1000
LOAD CONSTANT F=01
I——i F=IX (N=XX0)
BCD INPUT TO C REG F=1X (N=XX1I)
STACK INSTRUCTIONS F=10 N=(—-u)
AVAILABLE F=00
3 2
B 32 (1 used)ooeoooo . ROM SELECT, MISC. N 7 100009
SELECT ROM “N" F=
KEYBOARD ENTRY F=10 (N=XXI)
EXTERNAL ENTRY (N=XX0)
SUBROUTINE RETURN F=01 (N=XXX)

: 3,863,060
21 22

TABLE OF INSTRUCTION TYPES (X=DON'T CARE) —Cominugq

Type Available instructions . Name . Fields

4
X XXX 100000

--[RESERVED FOR
{PROGRAM STORAGE

T B el MOS CIRCUIT 3
’ ’ XXX 1000000
L T, e AVATLABLE__.___.__...__.. XXX 0000000
0. VN NO OPERATION (NOP) 000 000000O0GO
There are two type 1 instructions, jump subroutine buffer register 68 onto the I, buss 32 and loaded into

and conditional branch. They are decoded only by con- the ROM address register 74 (see FIG. 6). Thus, the in-
trol and timing circuit 16, No word select is generated struction is a BRANCH IF NO CARRY. There are

and all registers in arithmetic and register circuit 20 three ways the carry flip-flop 66 can be set: (1) by a
merely recirculate. The object of the jump subroutine 20 carry generated in the arithmetic and register circuit
instruction is to move to a new address in ROM and to 20; (2) by a successful interrogation of the pointer po-
save the existing address (plus one) as a return address. sition; and (3) by a successful interrogation of one of
The last instruction in a subroutine must be a RETURN the twelve status bits. An example is given in the table
to continue the program where it was left previously. * below.

Example Conditional Branch Execution

WORD ADDRESS RECEIVED INSTRUCTION SENT INSTRUCTION

AT ROM BY ROM EXECUTED RESULT
N-1 P INCREMENT SIGN DIGIT — —
N P+l CONDITIONAL BRANCH INCREMENT CARRY GENERATED
TO ADDRESS Q SIGN DIGIT ~ IF “A™ REG, NEGATIVE
N+l P+2 CONTENTS OF P+2 CONDITIONAL SEND P+2
BRANCH or
or or
Q .CONTENTS OF Q SEND Q
As discussed above, control and timing circuit 16 A typical test condition is to determine the sign of a

contains a 20 eight-bit shift register 58-62 which holds number. Support at address P in the program a branch
the current eight-bit ROM address and also has eight 40 to location Q is desired if the sign of A is positive, while

bits of storage for one return address (see FIG. 4). Dur- program execution is to continue if the sign if negative.
ing bit times b,~bs; the current ROM address flows In the example given in the table above, the instruction
through the adder 64 and is incremented by one. Nor- “increment the A register, word select of sign digit
mally, this address is updated each word time. How- only” is given at location P. During word time N-1 the
ever, if the first two bits of the instruction, which arrive 45 instruction is received by arithmetic and register circuit
at bit-times bas—byg are 10, the incremented current ad- 20 and is executed at word time N (the same word time

dress is routed to the return address portion 60 of the when the CONDITIONAL BRANCH instruction is re-
20 eight-bit shift register and the remaining eight bits ceived by control and timing circuit 16). If the sign of
of the instruction, which are the subroutine address, A is negative, there will be a nine in the sign digit. In-
are inserted into the address portion 58. These data 5q crementing this position will generate a carry and set
paths with the JSB control line are shown in FIG. 4. In the carry flip-flop 66 in control and timing circuit 16.
this way the return address has been saved and the Since the instruction is a branch if no carry is gener-
Jjump address is ready to be transmitted to ROM at bit ated, the program execution will jump to location Q

times byy~byq of the next word time. only if the sign is positive (i.e., was a zero), otherwise
The most frequently used instruction is the condi- 55 execution continues at P+2.

tional branch, which based upon data or system status Note that during word time N+1 the calculator did

implements the decision-making capability of the cal- nothing more than to select which of two addresses to

culator. In the calculator system described here this in- send next (all registers merely recirculate). To perform

struction also functions as an unconditional branch. a branch actually takes two word cycles to execute, one

The format of the branch instruction, as shown in the 60 to ask a question and set the carry flip-flop 66 if the an-
instruction. table above, is two ones followed by an swer is YES, and the other to test if the CARRY flip-
eight-bit branch address. The instruction is received at flop was set and transmit the proper address. In many
bit times bys~bs,. The last eight bits of the instruction cases the asking of the question is an arithmetic opera-
are stored in the address buffer register 68 (see FIG. 4). tion (i.e., A+B — A) which must be performed any-
During the next word time the carry flip-flop 66 is 65 way. Then the branch takes only one extra instruction,
checked at bit time bq. If the carry flip-flop was set dur- Contrary to most instruction sets, this set has no un-
ing the previous word time, the current ROM address conditional branch instruction. However, since an ordi-
is transmitted to ROM’s 0-6. If the carry flip-flop was _nary “jump” is one of the most used instructions, the
not set, the branch address is read from the address conditional branch is also used as an unconditional

3,863,060

23

branch or jump by insuring that the carry flip-flop 66
is reset when an unconditional branch is desired. This
is the reason the sense of the conditional branch is
BRANCH ON NO CARRY. The carry flip-flop 66 is
reset during execution of every instruction except
arithmetic (type 2) and interrogation of pointer or sta-
tus (types 3 and 4). Since only arithmetic and interro-
gation instructions can set the carry flip-flop 66, the
constraint is not severe. The jump subroutine instruc-
tion can also be used as an unconditional branch if the
previous return address does not have to be saved. In
summary, conditional branch can be used as an uncon-
ditional branch provided the state of the carry flip-flop
66 is known to be reset (i.e., provided the conditional
branch does not follow an arithmetic or an interroga-
tion of pointer or status instruction).

Arithmetic and register (Type 2) instructions apply
to the arithmetic and register circuit 20 only. There are
32 arithmetic and register instructions divided into
eight classes encoded by the left-hand five bits of the
instruction. Each of these instructions can be combined
with any of eight word select signals to give a total ca-
pability of 256 instructions. The 32 arithmetic and reg-
ister instructions are listed in the table below.

TABLE OF TYPE TWO INSTRUCTIONS
(in order ofbinary code)

CODE INST CODE INST

0 0000 0-B 1 0000 A-B
00001 0—B 1 0001 Be>C
00010 A—C 10010 SHIFT C RIGHT
00011 C—1 10011 A—1
00100 B—C 10100 SHIFT B,RIGHT
00101 0-C—>C 10101 C+C—>C
00110 0—C 10110 SHIFT A RIGHT
00111 0—C—1—>C 10111 0—A

0 1000 SHIFT A LEFT 1 1000 A-B—A

0 1001 A—B 1 100! A<—>B
01010 A—C—C 11010 A-C—A
01011 C-1—C 11011 A—1 —A
01100 C—A 1 1100 A+B —A
01101 0-C 11101 Ae=>C
01110 A+C—C 11110 A+C—A
01t C+1—=C 11111 A+l —A

KEY: AB.C ure registers; ~» means goes into; > means interchange

The eight classes of arithmetic and register instruc-
tions are:

(1) Clear (3);

(2) Transfer/Exchange (6);

(3) Add/Subtract (7);

(4) Compare (6);

(5) Complement (2);

(6) Increment (2);

(7) Decrement (2); and

(8) Shift (4).

There are three clear instructions. These instructions
are 0 > A, 0 — B, and 0 — C. They are implemented
by simply disabling all the gates entering the designated
register. Since these instructions can be combined with
any of the eight word select options, it is possible to
clear a portion of a register or a single digit.

There are six transfer/exchange instructions. These
instructions are A~ B,B—>C,C > A, A< B,B<C,
and C«> A. This variety permits data in registers A, B,
and C to be manipulated in many ways. Again, the
power of the instruction must be viewed in conjunction
with the word select option. Single digits can be ex-
changed or transferred.

There are seven add/subtract instructions which use
the adder circuitry 84. They are A+C — C, A+B — A,
A+C — A, and C+C — C. The last instruction can be

5

15

20

25

24

used to divide by five. This is accomplished by first add-
ing the number to itself via C+C — C, multiplying by
two, then shifting right one digit, and dividing by ten.
The result is a divide by five. This is used in the square
root routine.

There are six compare instructions. These instruc-
tions are always followed by a conditional branch. They
are used to check the value of a register or a single digit
in a register-and still not modify or transfer the con-
tents. These instructions may easily be found in the
type two instruction table above since there is no trans-
fer arrow present. They are:

(1) 0-B (Compare B to zero);

(2) A-C (Compare A and C),

(3) C-1 (Compare C to one);

(4) 0-C (Compare C to zero),

(5) A-B (Compare A and B); and

(6) A-1 (Compare A to one).

If, for example, it is desired to branch if B is zero (or
any digit or group of digits is zero as determined by
WS), the 0-B instruction is followed by a conditional
branch. If B was zero, no carry (or borrow) wouid be
generated and the branch would occur. The instruction
can be read: IF U =V THEN BRANCH. Again it is
easy to compare single digits or a portion of a register

by appropriate word select options.

30

35

40

45

50

55

60

65

There are two complement instructions. The number
representation system in the calculator is sign and mag-
nitude notation for the mantissa, and tens complement
notation in the exponent field. Before numbers can be
subtracted, the subtrahend must be tens-
complemented (i.e., 0-C — C). Other algorithms re-
quire the nines complement (i.e., 0-C-1 -5 C).

There are four increment/decrement instructions
(two of each). They are A*l — A and Cxl — C.

There are four shift instructions. All three registers
A, B, and C can be shifted right, while only A has a shift
left capability. The arithmetic and register instruction
set is summarized by class in the table below.

TABLE OF TYPE TWOQO INSTRUCTIONS
(divided by class)

Class Instruction Code
1) Clear 0—A 011
0—B 0001

0—C 30110

2) Transfer/ A—B 21001
Exchange B—C 20100
C—A 91100

A« B 11001

B—C 10001

C— A 1101

3) Add/ A+C—C 110
Subtract A—C—C 01010
A+B—A 11100

A-B—A 11000

A+C— A 1110

A—C—oA 1010

C+C—A 10101

4) Compare 0-B 00000
0—C 91101

A—C 30010

A—B 10000

A—1 1001

C—1 30011

5) Complement 0—C—C 00101
0—C—-t—C 00111

6) Increment At+l— A [RRRR
C+1—>C DINRR

7) Decrement A—1— A 1011
C—1—C 01011

8) Shift Sh A Right 0110
Sh B Right 10100

Sh C Right 10010

Sh A Left 01000

3,863,060

25

The twenty eight-bit shift register 58-62 in control
and timing circuit 16 contains twelve status bits or flags
used to remember conditions of an algorithm or some
past event (e.g., the decimal point key has already been
depressed). These flags can be individually set, reset, or
interrogated or all bits can be cleared (reset simulta-
neously). The format for the status operation (type 3)
instructions given in the instruction types table above
is repeated below ‘

TABLE OF STATUS INSTRUCTION DECODING

Bit No. 1111 11 | 111
9876 54 3 210
FIELD N F 0 100
F INSTRUCTION
00 SET FLAG N
01 INTERROGATE FLAG N
10 RESET FLAG N
11 CLEAR ALL FLAGS (N=0000)

If status bit N is one when the instruction “interro-
gate N is executed, the CARRY flip-flop 66 in control
and timing circuit 16 will be set. The status bit will re-
main set. Interrogate is always followed by a condi-
tional branch instruction. The form of the interrogation
is: *'If status bit N=0, then branch,” or “If status bit
N1, then branch.” The reason for this negative orien-
tation is that all branches occur if the test is false (i.e.,
CARRY flip-flop=0), a result derived from using the
conditional and unconditional branches as the same in-
struction.

Status bit O is set when a key is depressed. if cleared
it will be set every word time as long as the key is down.

A four-bit counter 44 in control and timing circuit 16
acts as a pointer or marker to allow arithmetic instruc-
tions to operate on a portion of a register. Instructions
are available to set and interrogate the pointed at one
of fourteen locations or to increment or decrement the

26

present position. The pointer instruction decoding is
given in the table below.

5 TABLE OF POINTER INSTRUCTION DECODING

BIT No.
FIELD

9 8 7 6
P

5 4 3 2
F 1 i

10
00

F INSTRUCTION

00
10
01

Set pointer to P
Interrogate if pointer at P
Decrement pointer
} P = XXXX
i.e. don't care

11 Increment pointer

As with the status interrogate instruction, the
CARRY f{lip-flop 66 is set if the pointer is at P when the
“pointer at P?” instruction is executed (as with status
interrogation, the actual question is in the negative
form: IF P#N, THEN BRANCH or IF P = OTHER
THAN N, THEN BRANCH). This instruction would be
followed by a conditional branch. In a math routine the
pointer allows progressive operation on a larger and
larger portion of a word. After each iteration (cycle)
through a loop, the pointer is decremented (or incre-
mented) and then tested for completion to force an-
other iteration or a jump out of the loop.

The data entry and display (type 5) instructions are
used to enter data into arithmetic and register circuit
20, manipulate the stack and memory registers, and
blank the display (sixteen instructions in this set are not
recognized by any of the existing circuits and are there-
fore available for other external circuits that might be
employed with other embodiments of the calculator).
The table below contains a detailed coding of the data
entry and display (type 5) instructions.

The first set of sixteen instructions (Igl, = 00) in this
table are not used by any of the main MOS circuits.
They may be used by additional circuits or external cir-
cuitry listening to the I, line such as may be employed
with other embodiments of the calculator.

The next instruction (151, = 01) in this table is called

_the LOAD CONSTANT (LDC) or DIGIT ENTRY in-

20

25

30

35

40

TABLE OF TYPE 5 INSTRUCTION DECODING

(X =don't care, which in this context
means the instruction does not depend
on this bit; either a 1 or a 0 here
will cause the same execution.)
| I8 PR P P P 9 1000

Iy I I; 1y I INSTRUCTION

0000 — 1111
N
10 0000 —> 1001

20

0 16 Available instructions

Enters 4 bit code N into

C Register at pointer position
(LOAD CONSTANT)

Display Toggle

Exchange Memory, C=M—C

Up Stack, C—~C—>D—E —F
Down Stuck, F>F ->E—>D —>A
Display OFF

Recall Memory, M —=M —C

Rotate Down, C— F—E —D —C
Clear aft registers 0— A B,C.D.EF.M
{,—> A Register (56 bits)

BCD = C register (56 bits)

A COOQ
HAAAHAAA AN

3,863,060

27

struction. The four bits in Iy - I will be inserted into the
C register at the location of the pointer, and the pointer
will be decremented. This allows a constant, such as 7
(pi), to be stored in ROM and transferred to arithmetic
and register circuit 20. To transfer a ten-digit constant
requires only eleven instructions (one to preset the
pointer). Several exclusions exist in the use of this in-
struction. When used with the pointer in position 13, it
cannot be followed by an arithmetic and register in-
struction (i.e., by Type 2 or 5 instructions as there are
problems in common use of the five-bit I, buffer 91 in
arithmetic and register circuit 20). With P=12, LDC
can be followed by another LDC but not by any other
type 2 or § instruction. When used with the pointer in
position 14, the instruction has no éffect. However,
when P=12 and LDC is followed by a type 2 or 5 in-
struction, position 13 in register C is modified. Loading
non-digit codes (1010-1111) is not allowed since they
will be modified passing through the adder. The next
set of instructions (Is Is 1, = 01X) in the type 5 instruc-
tion decoding table contains two display instructions
and six stack or memory instructions. The display flip-
flop in arithmetic and register circuit 20 controls blank-
ing of all the LED’s. When it is reset, the 1111 code is
set into the display buffer 96, which is decoded so that
no segments are on. There is one instruction to reset
this flip-flop Ip Iz I; = 100) and another to toggle it
(000). The toggle feature is convenient for blinking the
display.

The remaining instructions in the type 5§ instruction
decoding table include two affecting memory (Ex-
change C+<> M and Recall M — C), three affecting the
stack (Up, Down, and Rotate Down), one general
clear, one for loading register A from I, buss 28
(namely, I; Ig Iy =011), and one for loading register C
from BCD (111). Neither of the two last-mentioned in-
structions depends on bits 1, I, or I,. The I, — A in-
struction is designed to allow a key code to be transmit-
ted from a program storage circuit to arithmetic and
register circuit 20 for display. The entire 56 bits are
loaded although only two digits of information are of
interest. The BCD — C instruction allows data input to
arithmetic and register circuit 20 from a data storage
circuit or other external source such as might be em-
ployed with other embodiments of the calculator.

The ROM select and other type six instructions are
denoted by the pattern 10000 in instruction bits 1, — I,
The decoding table for these instructions is shown be-
low.

20

25

30

35

40

45

28

The ROM SELECT 'instruction allows transfer of
control from one ROM to another. Each ROM has a
masking option which is programmed to decode bits I,
—I;. A Select ROM 3 instruction read from ROM 1 will
reset the ROE flip-flop 70 in ROM 1 and set the ROE
flip-flop 70 in ROM 3. The address is incremented in
control and timing circuit 16 as usual. Thus, if Select
ROM 3 is in location 197 in ROM 1, the first instruc-
tion read from ROM 3 will be location 198.

There are three ways to arrive at a desired address,
on a different ROM as shown in FIG. 30. In path AA’,
a transfer (via an unconditional branch or a jump sub-
routine) to an address one before the desired address
(L1) is executed in ROM N first. Then a ROM select
M is given. In BB’, the opposite order is shown (first
ROM N select, then a transfer). Because the desired
transfer location (L1 or L2) may already be occupied
by an instruction, a third possibility may be used that
is less efficient in states but does not depend on pro-
gram locations. A transfer to L3 is made, then a ROM
select, and then an additional transfer from L4 to the
final desired location. With this method, L3 and L4 are
overhead states.

Bits Igl; = 01 designate a subroutine return (RET).
There are eight bits of storage in the twenty eight-bit
shift register 58-62 of control and timing circuit 16 for
retaining the return address when Jump Subroutine is
executed. This address has already been incremented
so execution of RET is simply a matter of outputting
the address on I, line 32 at bit times b,4-b,¢ and also in-
serting it into the ROM address portion 58 of the shift
register. It is also still retained in the return address
portion 60.

A key code is entered into control and timing circuit
16 by depressing a key on the keyboard. A key depres-
sion is detected by a positive interrogation of status bit
0. During a computation the keyboard is locked out be-
cause this status bit would ordinarily not be interro-
gated until return to the display loop. The actual key
depression saves the state of the system counter (which
is also the key code) in the key code buffer 56 (see
FIG. 4) and also sets status bit 0. Execution of the
KEYBOARD ENTRY instruction routes the key code
(six bits) in the key code buffer 56 onto I, line 32 and
into ROM address register 58 at bit times by~b45. The
most significant two bits by; and by are set to zero so
that a keyboard entry always jumps to one of the first
64 states.

TABLE OF TYPE SIX INSTRUCTION DECODING

Circuit
Affected (IR P Instruction
0000010000 ROM select. One of 8 as specified
! in bits 19 - 17.
ROM 00106000
1110010000
C&T XXX0110000 Subroutine return
XX01010000 External key code entry to C&T
XX11010000 Keyboard entry
DATA Send Address from C Register to
STORAGE INOTTITQOO0O0 Data Storage Circuit

Send data from C Register into Data

FOTTIT10000 Storage Circuit

29

Two: algorithms used in the calculator will now be
-discussed to further illustrate the instruction set. The
first of these algorithms is-a display wait loop, used
after a key has been processed and while waiting for an-
other key to be actuated. The second of these algo-
rithms is a floating point multiply operation.

A flow diagram of the 'display wait loop is shown in
FIG. 31. This loop is entered after a keystroke has been
processed, register A has been properly loaded with the
number to be displayed, and register B contains the dis-
play “mask” as discussed above. Two flags or status
bits are required. Status bits 0 (SO) is hardwired in
control and timing circuit 16 to automatically set when-
_ever a key is down. Status bit 8 (S8) is used in this pro-
gram to denote the fact that the key which is presently
down has already been processed (since a routine may
be finished before the key is released). In states D1S1
and. D182 these two status bits are initialized. Then a
loop is used as a time delay (about 14.4 ms.) to wait out
any key bounce. In D154 status bit 8 (S8) is checked.
The first time through the algorithm it must be 1 since
it was set in D181 to denote the key has been pro-
cessed. In state D18$ the display is turned on (actually
it is toggled since it must previously have been off;
there is no DISPLAY ON instruction). At this time the
answer appears to the user. In D186 status bit 0 (SO)
is checked to see if a key is down. If not (i.e., SO=0),
‘the previous key has been released, and status bit 8
(S8) is reset to 0 (D1S7). The machine is now ready to
accept a new key since the previous key has been pro-
cessed and released. The algorithm cycles through
D1S6 and D187 waiting for a new key. This is the basic
wait ¢ycle of the calculator. If SO=1 in D186, the key
which is down may be the old key (i.e., the one just pro-
cessed) or a new key. This can be determined upon re-
turn to D1S4 where status bit 8 (S8) is checked. If a
new key is down (5§8=0), execution jumps to D188, the
display is blanked, and a jump out is made to service

3,863,060

25

30

35

the key. A listing of the algorithm is given in the table 40

below, :

30
TABLE OF WAIT LOOP ALGORITHM -
LABEL OPERATION COMMENT
D1S1: 1-—>88 Set Status 8
DiS2: 0—S0 Reset Status 0
D183: P-1—>P Decrement pointer,
IFP#12 48 word loop (3 X 16)
THEN GO TO D183 to wait out key bounce
DISPLAY OFF
D1S4: IF S8 # 1 If key not processed,
THEN GO TO DIS8: leave routine
DI1S5: DISPLAY TOGGLE Turn on display
D1S6: IF SO#1 If key up, reset
THEN TO TO DIS7: S8 and wait
GO TO D18S2: Key down. Check if same key
D1S87: 0—>88 Indicate key not processed
GO TO DiSé6: Back to wait for key
D1S8: Blank display
D189: KEYS —>ROM Jump to start of program to
ADDRESS
process key that was down.
CONTINUE

The floating point multiply algorithm multiplies x
times y, where register C contains x in scientific nota-
tion and register D contains y (note that in the calcula-
tor register C corresponds to the user’s X register and
register D to the user’s Y register): When the multiply
key is depressed, the wait loop algorithm will jump in-
struction a ROM address corresponding to the first step
of the multiply algorithm because of the way the in-
structions KEYS — ROM ADDRESS (state D1S9 in
FIG. 31) is executed. The key code actually becomes
the next ROM address. At this time the contents of reg-
isters A-D are indicated by the following:

Register A floating point form of x

Register B = display mask for x

Register C scientific form of x

Register D scientific form of y

The algorithm for executing floating point multiply is
given in the table below. The letters in parentheses in-
dicate word select options as follows:

P pointer position
WP Up to a pointer position

X Exponent field
XS Exponent sign

M mantissa field without sign
MS mantissa with sign

W entire word

S mantissa sign only

TABLE OF FLOATING POINT MULTIPLY ALGORITHM

LABEL OPERATION COMMENT
MPY1l: STACK—A Transfer y to A. Drop stack
MPY2: A+C-—->C(X) Add exponents to form exponent of answer
A+C— C(S) Add signs to form sign |
IF NO CARRY GO T of answer.
MPY3 .
0->C(8) Correct sign if both negative
MPY3: 0—>B(W) Clear B, then transfer
A— B(M) mantissa of y. B(X)=0.
0—=>A(W) Prepare A to accumulate product
2—=P Set pointer to LSD (Least Significant
Digit) Multiplier (Minus 1}
MPY4 P+1—P Increment to next digit.
MPY5 A+B > A(W) Add multiplier mantissa to partial
. C=1—=C(P) product C(P) times. When C(P)=0,
IF NGO CARRY GO TO stop and go to next digit
MPYS5
SHIFT RIGHT A(W) Shift partial product right.
IFP # 12 Check if multiply is complete
THEN GO TO MPY4 i.e. is pointer at MSD.
IF A(P) > | Check if MSD = 0. If so must
THEN GO TO MPY6 shift left and correct exp.
SHIFT LEFT A(M) Multiply by 10 and decrement exponent
C—-1->C(X) -
MPY6 C+1—=>C(X) Always da this to correct for factor -
of 10 too small
A— B(XS) Duplicate extra product digits
A+B > A(XS) add t1th digits

IF NO CARRY GO TO
MPY7

A+l = AM)

IF NO CARRY GO TO
MPY7

If sum less than 10, then done

If sum more than 10, add |
If answer was not all 9%, then done

3,863,060

32

31
TABLE OF FLOATING POINT MULTIPLY ALGORITHM — Continued
LABEL OPERATION COMMENT »
A+l = A(P) - If answer was all 9's add 1
C+1 = C(X) and increment exponent
MPY? A EXCHANGE C(M) Get answer mantissa into C
GO TO MASK 1 Go to routine to position the answer in A

and make the proper mask in B. Then to the

DISPLAY program.

DETAILED LISTING OF ROUTINES AND
SUBROUTINES OF INSTRUCTIONS

A complete listing of all of the routines and subrou-
tines of instructions employed by the calculator and of

10 ting. Each address in ROM’s 6-6 is represented in octal

form by four digits in the second column from the left-
hand side of the page. The first digit identifies which
ROM, and the next three digits represent a nine-bit ad-
dress (the L preceding these four digits is merely an ad-

all of the constants employed by these routines and s dress identifier). The instruction or constant stored in
subroutines is given below. All of these routines, sub- each address of ROM’s 8-6 is represented in binary
routines, and constants are stored in ROM’s 8-6, as in- form in the third column from the left-hand side of the
dicated at the top of the first page associated with each page. Branching addresses are represented in octal
BOM. Each line in each ROM is separately numbered form by four digits in the fourth column from the left-
in Fhe ﬁr's} column from the left-hand side of the page. 20 hand side of the page. Explanatory comments are given
This facilitates reference to different parts of the lis- in the remaining columns.
ROM O
0 L0000: 1.11.1..1 — L0262 POWER! : JSB POWER?
1 L0001: .LII1.11 — L0134 GO TO ERZ
2 LO002: [111L1.1. DIG3 A+1 = A[X]
3 L0003: I1111.1.1. DIG2 A+l —A[X]
4 L0004: 1I11L1.1. DIG! A+1 = A[X]
5 L000s: ..1.1.11 — L0044 IF NO CARRY GO TO DIGO
6 L0006: .11.1.1... MULI STACK — A
7 L0007: .l.l... — L1010 ¥kxex SELECT ROM |
8 LO010: 11.1.1... MS1 DOWN ROTATE
9 L0Oil: 1.1 ~ L0240 GO TO MS2
10 L0012: .. — L1013 swexx YTX SELECT ROM |
1 L0013: — L0375 STOR1 : GO TO STOR2
12 LO014: RDOWNI : DOWN ROTATE
13 LOO|S:; - L0017 GO TO OWFL3
14 LOO16: A XEY STACK = A
15 LOOLT: . - . L0041 GO TO XEY|
16 L0020 NO OPERATION
17 LO021: . NO OPERATION
I8 10022 1 DIG6 A+ 1 = AIX|
19 1.0023; 1.1 DIGS A+l = A[X]
20 10024 A1 DIG4 A+l = AX]
21 10025 .. 111 - L002 IE NO CARRY GO TO DIG3
2 LOO26: L1L1.0.. PLS! STACK — A
23 LOO27: 1.l — L1030 kerxE SELECT ROM 1
24 L0030: LIL.l. FVi i — SI1
25 LOO3L: 111101 — L0036 GO TO N1
26 L0032: ..1111.11 — L0036 PV1 GO TO NI
27 L0033: 1.l..l. PMTI I - S10
28 L0034: ..HIH].11 - L0036 ROR! GO TO NI
29 L0035: ..ll.. RETURN
30 L0036: 11111 N1 IFS7 # 1
31 L0037: .1l.. — L0060 THEN GO TO N2
32 L0040: .11.l... = L3041 Heaxs SELECT ROM 3
33 L0041: ..I.. — L1042 **x*x+ XEY] SELECT ROM |
34 L0042: — L1043 ***%+ SUMI SELECT ROM |
35 L0043: DPI 1 — 85§
36 L0044: —> L1045 **x¢+ DIGO SELECT ROM 1|
37 L0045 ... NO OPERATION
38 L0046: .11.1.1... DIVI STACK — A
39 L0047: Ll —> LI0SI ke SELECT ROM 1
40 L0050: — L6051 #*x***+ DATE SELECT ROM 6
41 LOOS1: NO OPERATION
42 L00S2: — L4053 ***x+ SODI SELECT ROM 4
43 L0053: — L4054 ***xx TRNDI SELECT ROM 4
44 L0054 PRCI STACK — A
45 L0055: = L1056 *xxxx SELECT ROM 1
46 10056: PRE 1 —S7
47 LO0S7: -~ Lolo2 GO TO STOR3
48 LOO60: N2 | — 87
49 L0061 — L0117 GO TO OWFL3
50 L0062: . DIGY A+l = AIX]
51 LO063: 1 DIGY A+l = AX]
52 LO064: A DIG7 A+l = AX]
53 LO06S: ..1.0.11 - L0022 {F NO CARRY GO 10O DIG6
54 LO066: 11T MINI 0—C-1 »Ci$]
55 LO067: .11l - L0026 JSB PLS}
56 L0070; 11111 CLR! 0 — C{W]|
57 LO07L: 1.1l — L0104 JSB CLR2
58 L0072: II1LILIT = L0366 CHS! GO TO CHS2
59 L0073: L..ll. RCL! IF S8 # 1
60 L0074: .1.11.11 = 10114 THEN GO TO RCL3
61 LO075: 111111 - LolIS GO TO RCL4
62 L0076: .1.1.1... - ENTERI C — STACK
63 LO077: L111.] 0 — Sl
64 LO100: 1111 9 —S10
65 1.y 0 — §7

_Lotor:

3,863,060

33 34
ROM O—Continued

66 LO102: .l.1.1.. STOR3 0 — 'S4

67 LO103: .1.1..11 - GO TOOWFLI :

68 LO104: L1111, CLR2 IFS7 # 1

69 L0105: 1..111.11 - L0216 THEN GO TO CLR3
70 LO106: .1.L.1.. IFS4 #1 -

7t LO107: .L.l.111 — LOl1l THEN GO TO CLR4
72 LOI10: L. l1L1] — L0216 GO TOCLR3

73 Lol .I.Ll.. CLR4 C — STACK

74 LOTI2: . 1.0 C — STACK

75 LOLI3: 111111 - L0076 GO TO ENTERI

76 LO114: .l1.lLI.. RCL3 C — STACK

77 LO115: LI.1.1.. RCL4 M— C

78 LOI16: .1ill.1.. OWFL7 0 — §7

79 LO117: .l...l. OWFL3 1 — S4

80 L0120: 1.l.1. OWFLLI 0 — S8

81 LO121: .1L.111. OWFL4 C — A[W]

82 LO122: .1.1I11L. OWFL5 A — B[W)

83 LOI23: 11.11.. 12— P

84 LO124: .11.1.11. 0 — C[MS]

85 LO125: .11l C +1 - C[P}

86 LO126: .1111..1, C+1 — C[P}

87 LO127: .1L111.1 IF C[XS] =0

88 LOt30: .1t1inniy - L0177 . THEN GO TO MSK1
89 LOI31: LALLLI. 0—-C~1 — C[X]

90 LO132: 1L, IF C[XS] =0

9i LOI33: L.1..111 - L0221 . THEN GO TO MSK2
92 L0134 .1.1..1.. ERZ 1 > 85

93 LOI35: 111.11.1. A +B — A[XS]

94 LOI36: .11..11) - L0141 IF NO CARRY GO TO OWFL2
95 LOI37: .11.1110. 0 — C[W]

9 LO140: . .1.1...1 — L0120 JSB OWFL1

97 LOt4l: L1iLMLL OWFL2 0 = C[W]

98 L0142: L1111, C -1 - C[WP]

99 LO143: L1LIL1L. 0 — C[XS]
100 LOt44: - 11111011 A EXCHANGE C{S]
101 LOI4s: L1111 — L0120 GO TO OWFLI
102 LO146: 11,1l DIS4 0 — S84
103 LO147: . . DIS3 0 —S9

104 LO0150: el L 12— P
105 LOI51: ..l.l. DIS5 0 — S0
106 LO152: ...l11. DIS6 P—1 -—P
107 LO0153: LI IFP # 12
108 LO154: 1L — L0152 THEN GO TO DIS6é
109 LO155: S 1S IS DISPLAY OFF

110 LO156: 1.1.1.1.. . IFSY # 1
11 LO157: 1111111 - L0171 THEN GO TO DIS7
112 LO160: A1 0 — S5
113 LO161: 1. : SHIFT LEFT A[X]

114 L0162: TKR KEYS — ROM ADDRESS
115 L0163: . DIS9 1 —> $9

116 LO164: WA i —>P

117 LO165: 1.1 IFS5 # 1 .

118 LO166: 111111 — L0172 THEN GO TO DiS10
119 LO167: 1.1, C+1 — C[WP]

120 LO170: 111111 — L0163 IF NO CARRY GO TO DIS9
121 LO17E: .1l DIS7 DISPLAY TOGGLE

122 LO172: REN DIS10 IFSO # 1

123 LO173: 1.1t —» L0163 THEN GO TO DIS9
124 LO174: 11,111 — L0151 GO TO DIS5

125 L0175 .1.LL1L. SCINT9 A - B[X]

126 LOI76: 1.1.1.111 — L0245 GO TO SCINT4

127 LO177: 1.1111.1 — L0236 MSK1 JSB SROUND

128 L0200: L.111.1.1. 0 — A[X]

129 L0201: t1111.1.1 A+1—=0A[X]

130 L0202: .1.L.l. SHIFT LEFT A[X}

131 L0203: 11.L111. A EXCHANGE B{W]

132 L0204: 1..1.1. IF A <=B{X]

133 L0205: 1L - Lo17s THEN GO TO SCINT9
134 L0206: .1.1.1.1. A — B[X]

135 L0207: 1L11.1.1. MSK11 A—1 — AlX]

136 L0210: I1.11.1111 —~ L0233 IF NO CARRY GO TO MSK12
137 LO2t1: 11111, MSKi4 IFP # 3

138 L0212: 1.a.11.11 — L0226 THEN GO TO MSK13
139 L0213: .l.l.. = L1214 kxrkx MSK15 SELECT ROM 1

140 LO214: ... 1., MSK28 P—1-—P

141 L0215: L.l.111 — L0211 GO TO MSK 14

142 LO216: .1111.1.. CLR3 0 — 87

143 L0217: .l.l.1. 0 — S4

144 L0220: .1.1.111 — L0121 GO TO OWFL4

145 L0221: .11, MSK2 C — A[X]

146 L0222: I1.1111..1 — L0236 JSB SROUND

147 L0223: H11tL1.1. A+1 — AlX]

148 L0224: 1L.1LLL. MSK21 A—1 = A(X]

149 10225 1.11.111 — L0231 IF.NO CARRY GO TO MSK22
150 L0226 .LILL.1. MSK13 C -1 CIX]

151 L0227: 1..11.11 — . L0214 IF NO CARRY GO TO MSK28
152 L0230 1..L11H1 -~ L0213 ‘GO TO MSKI15

153 LO231: LilLdl. MSK22 SHIFT RIGHT A[M]

154 L0232 L1110 — L0224 JSB MSK21

155 L0233 ... 1. i MSK12 P—1—P]

156 LO234: Ll SHIFT RIGHT C[M}

157 L0235 L.L10Ld - L0207 JSB MSK 11

158 LO236: L.t ~» L2370 e SROUND : SELECTROM1

159 L0237 1. ‘RETURN

3,863,060

35 36
ROM O —Continued

160 L0240: wlo — L1241 el MS2 SELECT ROM 1

161 L024t: " l.11.1, SCINT3 IF A >=B[XS]

162 L0242; gl — L0245 THEN GO TO SCINT4
163 L0243: 111, SCINT2 A+1 S A[X]

164 L0244: i . A—1 — A[XS]

165 L0245 . L1111, SCINT4 0 — C[X]

166 L0246: ..11.11.. 3 =P

167 L0247: 1Ml.1.11.. SCINT? IFP# 12

168 L0250: 1111..111 - L0361 THEN GO TO SCINTS
169 L0251: L.1.111. SCINT6 B EXCHANGE C[W)
1170 L0252: . DIS1 0 —> S6

174 L0253: — . L0147 JSB DIS3

172 L0254: 0 — A[MS]

173 L0255: DENTI IFS4 #1

174 L0256: ~ L0260 THEN GO TO DENT2
175 L0257: C — STACK

176 L0260: DENT2 0 —S6

177 1.0261: — L0351 GO TO DENT3

178 1.0262: POWER2 : CLEAR REGISTERS

179 L0263: CLEAR STATUS

180 L0264: 1 — 82

18] L0265: - LOII GO TO CLR4

182 L0266: 1. DENTS A+1 —A[X]

183 L0267: ... 11, IF B[M] =0

184 L£0270: 111.11.11 — L0346 THEN GO TO DENTIS
185 L0271 LIILIL., IFP .

186 L0272: L111EH11l — L0277 THEN GO TO DENTS
187 L0273: .11.111. 0— C[W] -

188 L0274: 1111HILT, C+1 — CiS]

189 L0275: .A1111111, C+ ->C|S]

190 L0276: 1L.1.11., : 13 —

191 L0277: I1.LIL.L DENTS SHIFT RiGHT C[WP]

192 L0300: ... 11, DENTI19 IF B[M] =

193 LO301: 11.1.1111 ~ L0313 THEN GO TO DENTI10
194 L0302: - 11..11., 125 P

195 LO303: L1110, . IF A[P] >= |

196 LO304: 1100111 > L0313 THEN GO TO DENTI10
197 L0305 L11LL.L. 0 — A[X]

198 LO306: 111101, DENTI1 A-1 > A[X]

199 LO307: L.11..0. IF A[P) >=1

200 LO3I0: tl.Lai — LO3I3 THEN GO TO DENTI10
201 LO3L: bl SHIFT LEFT A[M}

202 LOM2: tl.1ndd - L0306 GO TO DENTH |

203 LO313: 1L DENTI10 A — B[X]

204 LO314: L1111 B EXCHANGE C{W|

205 LO31S: 1111111 A EXCHANGE C{W]

206 LO316: .01 0 - S5

207 LO317: 1.1l — LOl46 JSB DIS4

208 1.0320: |...1.| 11, B EXCHANGE C[W]

209 L0321: .1L.1.0. 0 — C[X]

210 L0322: .11111.11 C +'1 — C[MS]

211 L0323: w1l DENTI2 0 p

212 L0324 .LII..1. C =1 —>C[P]

213 L0325: ..1111. DENT4 P+l —

214 L0326: .1.11..1 C—l—-»C P]

215 L0327: 111111 — L0332 IF NO CARRY GO TO DENT6
216 L0330: .1..1.1 SHIFT LEFT A[WP]

217 L0331: 1L.1.1.111 — L0325 GO TO DENT4

218 10332: 1.1.1.1 DENTé6 A EXCHANGE B{X]

219 L0333: 11111 A — #

220 L0334: .LLIL.1. IF S5

221 L0335 Ill...11 - L0340 THEN GO TO DENT7
222 L0336: .11 1 — S6

223 L0337: I1L.1.1111 — L0313 . GO TO DENTI10

224 L0340: RN DENT7 IFS6 # 1

225 L034): LIL1L11 — L0266 THEN GO TO DENTS
226 L0342: .. . P—~1-—>P

227 L0343: .1.L11. IFP #2

228 L0344: LI1111111 — L0277 THEN GO TO DENTS
229 L0345: 11..11 — L0300 GO TO DENT19

230 LO346: 1.1.111. DENTI8 SHIFT RIGHT C[W]

231 LO347: L.L11L, B EXCHANGE C[W]

232 LO350; .11.1L.1 — L0146 JSB DIS4

233 LO3SI: L0 DENT3 0 — C|W]

234 L0352 L1 HL 0 — B{W]

238 L0353: 1L.i.11. 13— P

236 L0354 L1L1t.. LOAD CONSTANT 3

237 L0355 l..l.l.. 0 — S8

238 L0356: .1.1L.I.1. C—1— C[X]

239 L0357: L.1.L1. B EXCHANGE C{X]

240 L0360: 11.1.1111 — L0323 GO TO DENTI2

241 L0361: 1.11..1. SCINTS IF A[P] >=1

242 L0362: I1.1.1.111 — L0251 L0363: THEN GO TO SCINT6
243 10363: R B C—1 - C[P)

244 L0364: L. P+l —

245 L0365: 1.1.11111 — L0247 GO TO SCINT?

246 L0366: .1111111. CHS2 0—-C—1— C[S]

247 L0367: .11.1111. C — A[S)

248 L0370: .11..1.1, C — A[X]

249 LO371: 1.1 - L0147 GO TO DIS3

250 L0372 NO OPERATION

251 L0373: NO OPERATION

252 L0374: NO OPERATION

253 L0375: STOR2 C EXCHANGE M

254 L0376: M—>C

255 LO377: - L0102 GO TO STOR3

3,863,060

38
ROM |
0 NO OPERATION
1 NO OPERATION
2 R3 1 - S§i
3 ~>» L1066 R2 GO TO R12
4 Ri 1 -8l
5 — L1115 GO TO R13
6 XTY 0~ 89
7 3 L201Q Hwwx SELECT ROM 2
8 — L1346 SMUL11 1SB MPY
9 — L1115 ’ GO TO R13
10 —» L2013 *¥**x SQRI SELECT ROM 2
1 XTY11 1 — S8
12 . IFS7 # 1
13 — L1026 THEN GO TO XTY12
14 0 — S7
15 — L1374 JSBSQR .
16 -» L1115 . GO.TO R13
17 —» 14022 ****x RETR4 SELECT ROM 4
18 - — L1065 R6 GO TO R11
19 RS I — Sl
20 R4 1 - 83
21 —= LI115 GO TO R13
22 — L1006 XTY12 JSB XTY
23 - L1114 GO TO R14
24 . 0 —'8§7
25 —> L1154 ADDI11 JSB ADD
26 — L1115 GO TO R13
27 _ DIG10 0 — S7
28 —> L0035 k¥dxx . SELECT ROM ¢
29 RETI! 1 RETURN
30 DIGI11 IFS4 # 1
3t - = L1060 THEN-GO TO DIG14
32 — L1033 GO TO DIGI0
33 ' NO OPERATION
34 — L1317 XEY GO TO MS17
35 -» L1133 SUM11 GO TO SUMI2
36 ->» L1115 RO GO TO R13
37 IFS7T # 1
38 —» L1033 THEN GO TO DIG10
39 — L1036 GO TO DIGI!
40 . sSDIV1l 0 — 87
41 — L1076 GO TO DI
42 PRC2 C — STACK
43 IFS7 # 1
44 — L1100 - THEN GO TO PRC4
J5 — L1070 GO TO PRC3
46 PRCI1 A EXCHANGE C{W]
47 - L1052 GO TO PRC2
48 DIG14 CLEAR STATUS
49 TKRR1 KEYS — ROM ADDRESS
50 R9 NO OPERATION
51 R8 NQ OPERATION
52 R7 1 — SI
53 R11 1 = 83
54 RI2 1 — 82
55 — L1115 GO TO RI13°
56 PRC3 Q —»: 87
57 - L1153 JSB SUB
58 DOWN ROTATE
59 C — STACK
60 C—1— C[X]
61 C—1 - C(X]
62 ~» L1344 DI JSB DIV
63 —>» LIIIS JSB R13
64 —* L1346 PRC4 JSB MPY
65 C~-1 — C[X]
66 C—-1 —C[X]
67 L1115 JSB R13 :
68 R100 DOWN ROTATE
69 C -1 — C[X]
70 C—1- C[X]
71 ONE 0 > A[W]
72 A+1 = A[S] |
73 SHIFT RIGHT A[W]
74 A EXCHANGE C[W]
75 L1337 GO TO RTN16 .~
76 R14 STACK —» A -
77 — LOI16 ***** RI|3 SELECT ROM 0
78 MSK20 0— C[S]°
79 0 — C[{XS]
80 C+C — C[P]
81 L1130 IF NO CARRY GO TO
MSK16
82 B — C[WP]
83 C+1 — C[W]
84 IF C[S] =0
85 L1130 THEN GO TO MSK16
86 SHIFT RIGHT C[MS]
87 - SHIFT RIGHT B{MS]
88 MSK16 A EXCHANGE C[W]
89 C — A[S)
- 90 -~>» L1250 GO TO MSKRO
9] . SUMI12 IFST# i
92 — L]255 THEN GO 10 SUM13

3,863,060

ROM 1-Continued

40

11

O — — ot o o e
—CCXIRN NI

[SN]
w2

Nall- SIE No U I -

DIV IDII

oo
(=)

LSS
180

.l
o PN

i

l

i il

l

{

W

VoL

L1252
L3140

L1227

L1227

L1234
L1240

L1t64

L1367
L1172

L1370

L1204

L2204
L1207

L2211

Lillé6

L1232
L1236

L0237
L1140
L0241
L1351
L1331
L1010
L0252

L1154

L1346
L1267

Ly

% %k

R AR

ok

ok Kok

*okok ok ok

koK ok

RN3

SUB
ADD
ADDI

ADD4

ADD3

ADD7

ADDS

ADD9
ADD10

RNDI

RND2
RND3
RND4

SCIN
MSI11

MSKRO
SUMI4

SUMI3

StUMlo

IFS4 # 1
THEN GO TO SUM 14
SELECT ROM 3

1
THEN GO TO RNDI
IFS1 # 1

THEN GO TO RND3
GO TO SCIN
0-C—1 —C[S]

A+
A+
C+1 — C[XS]
C+1 — C[XS]
IF A >=C[X]
THEN GO TO ADD4
A EXCHANGE C[W]
IF AIM] >=1
THEN GO TO ADD2
GO TO ADD7
SHIFT RIGHT A[M]
IF AIM] >=1
THEN GO TO ADDS
C—-1 — C[XS]
C—1— C[XS]
0 = A[X]
A EXCHANGE C{S}
A—C — A[S]
IFA[S] >=1
THEN GO TO ADDS
A+C — A[MS]
A —C — A[S]
SELECT ROM 2
A —C — C[M]
IF NO CARRY GO TQ ADDY
0—C — C[MS)
C — A[M]
SELECT ROM 2
NO OPERATION
NO OPERATION
NO OPERATION
C+1 — C[P]
0 — C[X]
C -1 — C{|WP}
B EXCHANGE C{W]
A EXCHANGE C[W]
P—-1—P
GO TO MSK20
NO OPERATION
NO OPERATION
NO OPERATION
NO OPERATION
IFS1 # 1
THEN GO TO RND2
C+1 — C[X]
IFS2 #1
THEN GO TO RND4
C+1 — C[X]
C+1 — CiX]
SELECT ROM 0
GOTOR
SELECT ROM 0
DOWN ROTATE

IFS7 # |
THEN GO TO MS12
0 — 87

JSB ROTI1

C — STACK

GO TO SMULL11
0 — S6

SELECT ROM 0
0—-C—-1-—- C[S)
0 — 87

| — S4

STACK — A

0 — S8

IFS4 # 1
THEN GO TO SUMI6
0—-C—1 -» C[S]
STACK — A
C — STACK
A EXCHANGE C[W}
JSB ONE

3,863,060

41 42
ROM 1 —~Continued
187 L1273: - 1.1l IFS4 # 1
188 L1274: LIIFILH — LI276 THEN GO TO SUMI5
189 L1275 .L.111111. C—1 — C[S]
190 L1276: .LIL..1 - L1154 SUMIS JSB ADD
191 L1277: Il.1.1.. : DOWN ROTATE
192 L1300: .ILL.I. STACK — A
193 L1301: .1141..1 = L1154 JSB ADD
194 L1302: .1.11.. C — STACK
195 L1303: 11.1.1. DOWN ROTATE
196 L1304: 11.1.1.. DOWN ROTATE
197 L1305 111111 — LILIS GO TO R13
198 L1306: .1..1l11.1 — L1107 MS14 JSB ONE
199 L1307: .IL.L.11.1 = L1153 JSB SUB
200 L1310: 1.1.111. B EXCHANGE C{W]
201 L1311: 1.1, DOWN ROTATE
202 L1312: 11L.LITL. A EXCHANGE C[W}
203 L1313: “11l.1..1 — L1344 JSB DIV
204 L1314 1...1.. 1 — S8
205 L1315: 11HI10..1 — L1374 JSB SOR
206 L1316 LIl STACK — A
207 L1317: 1.1l MS17 C — STACK
208 L1320: HIL1.1 A EXCHANGE C[W]
209 L1321: <1.rh1ll = LIS GO TO RI3
210 L1322: 100 CSN DOWN ROTATE
211 £1323: tl.bl.. DOWN ROTATE
212 L1324: _ILITDIL. 0—C—1- C[S]
213 L1325: 1l.i.l.. DOWN ROTATE
214 L1326: il.1.1.. : DOWN.ROTATE
215 L1327: 1LIHI1111 — L1337 GO TO RTN16
216 L1330 ... : NO OPERATION
217 L1331: L.LIIL, ROTI B EXCHANGE C|W}
218 L1332: Il.1Ll.. DOWN ROTATE
219 L1333 1111 STACK — A
220 L1334 1.0l B EXCHANGE C[W)
221 L1335: .1.1.1.. C — STACK
222 L1336; ..l.110. B — C[W]
223 L1337: L.l RTNI6 DISPLAY OFF
224 L1340: 1111111 — L1364 GO TO RTNY
225 L1341: 1.1 . RTNS IFS4 # 1
226 L1342: .. L.111 - L1021 T
227 L1343; .1lL.l.. — L3344 **xxx RETR3 SELECT ROM 3
228 L1343 I1LILIL : DIV A EXCHANGE C[MS]
229 L1345 11111111 — L1347 GO TO DIVI2
230 L1346 1.0 —> L2347 =xxex . MPY SELECT ROM 2
231 L1347 1111 DIVI2 A—-C — C[X]
232 L1350 b, L2351 eexx SELECT ROM 2
233 L1351 .1LLL. MS12 STACK — A
234 L1352: “1L11.1.1 = L1331 . JSB ROTI
235 L1353 AL C - STACK
236 L1354: A EXCHANGE C[W]
237 L1355: — L1344 JSB DIV
238 L1356: .. DOWN ROTATE
239 L1357: . — L1346 JSB M
240 L1360: .11. STACK — A
241 L1361: .l — L1153 JSB SUB
242 L1362: REWD — L1331 JSB ROTL
243 L1363: L1 — L1306 GO TO MS14
244 L1364 . A RTNO IFST # 1
245 L1365: ..l1iLIIl — L1035 THEN GO TO RET11
246 L1366: 1lL..ill — L134t GO TO RTN8
247 L1367: I1LLILL. ADD2 A EXCHANGE C[W]
248 L1370: ..1.L.L. ADDS IF A >= C[X]
249 L1371; JA11LLIL - — L1172 THEN GO TO ADD7
250 L1372: 1111LLL. A4 1 = A[X]
251 L1373: 1111 — L1167 IF NO CARRY GO TO ADD3
252 L1374: ..1L.10. SOR IF C{M]| >=1
253 L1375: QLI — L1012 THEN GO TO SQRI
254 L1376: 11.... RETURN
ROM 2
0 L2000: ~ L000l Erdk ERR21 SELECT ROM 0
1 1.2001; 11..111. PMU23 A+B — A[W]
2 L2002: L1111 PMU24 C-1 —CI[S§]
3 L2003: ... 111 — L2001 IF NO CARRY GO TO PMU23
4 L2004: 111.1.111 A EXCHANGE C[W}
5 L2005: .1..1.11. SHIFT LEFT A[MS]
6 L2006: 111.1.111 A EXCHANGE C[W}
7 L2007: .111%.11 — L2074 GO TO PQO23
8 L2010: .iL.1L.1.. XTY21 STACK — A
9 L2011: .1.1.1.. C — STACK
10 £2012: I1LL1IL. A EXCHANGE C[W]
11 L2013: LI1L11L LN22 0 — A[W]
12 L2014: .1l..1.. I —S6
13 L2015 . 1Li..01 A—C = A[M]
14 L2016: 1 — . L2000 IF NO CARRY GO TO ERR21
15 L£2017: LIL.11 SHIFT RIGHT A[W}
16 L2020: llIHll C—1 —CIS]
17 L2021 ... 11 — L2000 IF NO CARRY GO TO ERR21
18 L2022: 11111110 LN25 C+1 —=C[S]
19 L2023: .1.LIIL. LN26 A — B[W]

3,863,060

43 : 44
ROM 2 —Continued
20 L2024: ..1.11.11 — L2026 GO TO ECA22
21 L2025: L.11.1.1. ECA21 SHIFT RIGHT A[WP]
22 L2026: 11111111, ECA22 A—-1— A[S)
23 L2027: - ..1.1.111 — L2025 IF NO CARRY GO TO ECA2I
24 L2030: L1110, 0 — A[S]
25 L2031: 111111, A+B > A(W]|
26 L2032: .dl.1.1.. IFSe # 1
27 L2033: .1L.I1.1.11 — L2132 THEN GO TO EXP29
28 L2034: 11.11..1. A—1 — A[P]
29 L2035: ..1.1.11 - L2022 IF NO CARRY GO TO LN2§
30 L2036: i.11..1 A EXCHANGE B{WP]
31 L2037: .1..1.1. SHIFT LEFT A[WP]
32 L2040: 1111111 A+B — A[S}
33 L2041: 111..111 — L2341 IF NO CARRY GO TO LN24
34 S L2042: 11111, 7P
35 L2043: .1111.11 — = L2074 GO TO PQO23
36 L2044: 11111.1.1. PRE23 A+1 — A[X]
37 L2045: L.1111.1. PRE29 IF A[XS] >= |
38 L2046: 111111111 — L2337 THEN GO TO PRE27
39 L2047: 1l1..1.11. PRE24 A—B — A[MS]
40 L2050: .1.1.11 — L2044 IF NO CARRY GO TO PRE23
4l L2051: 111.1.11. A+B > A[MS]
42 L2052: .1..111. SHIFT LEFT A[{W}
43 L2053: .LILL.IL. C—1 = CiX]
44 L2054: ..1.L111 — L2045 IF NO CARRY GO TO PRE29
45 L2055: L.I1.110. PRE25 SHIFT RIGHT A[W]
46 L2056: .IL.I.1. 0 — C[WP]
47 L2057: 1ilL.1.L1. A EXCHANGE C[X]
48 L2060: .IL.11111. PRE26 IFC[S] =0
49 L2061: .I11.1.111 —» L2065 THEN GO TO PRE28
50 L2062 11.1.111. A EXCHANGE B[{W]
51 L2063: Hl...111. A—B = A[W]
52 L2064: .I1LIT1. 0—C~—1 — C[W]
53 L2065: L11.I111. PRE28 SHIFT RIGHT A[{W]
S4 L2066: I..1.1.. 0 — S8
55 L2067: .1111.1 — L2074 -GO TO PQO23
56 L2070: .11LLLDITL. PQOIS5 C+1 — C[S]
57 L2071: 1511, PQOI16 A—B — A[W]
58 L2072: L1100 — - L2070 IF NO CARRY GO TO PQOIS
59 L2073: HIL.111. A+B — A[W]
o0 L2074: L.L.H1L. PQO23 B EXCHANGE C[W]
6l L2075: LT) 0 — C{W]
62 L2076: .1.1L.11. C—1— C[M]
63 L2077: .l..li.. LOAD CONSTANT 4
64 L2100: .1111..01 C+1 — C[M]
65 L2101: I1.1.111 PQO24 SHIFT RIGHT C[W]
66 L2102: L1111 IFP# 5
67 L2103: 1LI.111 — L2321 THEN GO TO EXP35
68 L2104: .1L.11.. 6 > P
69 L2105: L1111, 0 — A[WP]
70 JL2106: I1.1.11.. 13— P
71 L2107: 1.L.111. B EXCHANGE C[W]
72 L2110: 1111110 A EXCHANGE C[W]
73 L2111 1. LOAD CONSTANT 6
74 L2112: .1l..111 — L2141 GO TO EXP23
75 L2113: LI1LIL.. EXP32 IFP # 11
76 L2114: L1.JLI1 — L2246 THEN GO TO EXP31
77 L2115 .1l.11.. LNC2 LOAD CONSTANT 6
78 L2116: I.1.11.. LOAD CONSTANT 9
79 L2117: . .I1L1L... * LOAD CONSTANT 3
80 L2120: ..Lil.. LOAD CONSTANT |
81 L2121: .10l LOAD CONSTANT 4
82 L2122: .11LI1L. LOAD CONSTANT 7
83 L2123: ..L.11.. LOAD CONSTANT 1
84 L2124: IL..l1.. LOAD CONSTANT 8
85 L2125 .. 11... LOAD CONSTANT 0
86 L2126: .1.1.11... LOAD CONSTANT 5
87 L2127: .11.11.. LOAD CONSTANT 6
38 L2130: L.1l.11.. 1t — P
89 L2131: 1LLIEIN - — L2327 GO TO LN35
90 L2132: 11110, EXP29 A+1 — A[P]
91 L2133 .1.L111. EXP3? A — B[W]
92 L2134 L1111 C—1 — CiS]
93 L2135 .L1L11 - L2026 IF NO CARRY GO TO ECA22
94 L2136 LILL.L. SHIFT RIGHT A[WP]
9§ L2137: L1 A EXCHANGE C{W|
96 L2140 111 SHIFT LEFT A[MS]
97 L2141: 1ILLIIL EXP23 A EXCHANGE C[W]
98 L2j42: ILITLLIL. A—1 — A[S]
99 L2143 LRI = L2133 IF NO CARRY GO TO EXP22
100 L2144 tLLL0H, ' A EXCHANGE B[W}
101 L2145 111110, A+1 — A[P]
102 L2146: 1.1..111 - L2211 IF NO CARRY GO TO NRM21|
103 L2147: 1.LL1L PQO21 SHIFT RIGHT C{MS]
104 L2150: .1..t11L. SHIFT LEFT A[W]
105 L215i: 1111 - L2071 GO TO PQOI16
106 L2152: 1.11.11.) EXP34 IFP# 9
107 L2153; 11L1.11 = L2164 "THEN GO TO EXP33
108 L2154: {11.11.. LNCD2 7 P
109 L2155:. .ILI1... LOAD CONSTANT 3
10 L2156: .1l1.11.. LOAD CONSTANT 3
111 L2157 LOAD CONSTANT 0
112 L2160 el L LOAD CONSTANT 8
113 1.1.11 LOAD CONSTANT 5

L2161:

ROM:2 - Continued

3,863,060

46

114
115
116
117
118

119:

120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147

148.

149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167

169
170
171
172
173
174
175
176
177

178

179
180
181
182
183
184
185
186
187
188
189
190
191
192
193

194.

207

L2327
L2113

L2327

L2201

L2202:

L2222

L2213

L2226

L2204

L2336
L2246

L2345

L2347
L2327

L2310

L L2273:

L2202

L2047

L2315

EXP33
LNCD!1

MPY26
MPY27

MPY28.

NRM21
NRM23

NRM24.

NRM29

NRM25

EXP31

LNC10

LN27
LN28

LN29 .

PRE2!

PRE22

9~ P
GO-TO LN35
IEP # 10

THEN GO TO EXP32
9—>P :
LOAD CONSTANT 3
LOAD CONSTANT 1
LOAD CONSTANT 0
LOAD CONSTANT 1|
LOAD CONSTANT 7
LOAD CONSTANT-9
LOAD CONSTANT 8
LOAD CONSTANT !
10 = P : :
GO TO LN35

A+B — A[MS]

C—-1 —>C[P]

'IFE NO CARRY GO TO MPY26

SHIFT RIGHT A[W]
P+1 —P
IFP # 13
THEN GO TO MPY27

IF A(P] >=1
THEN GO TO NRM24
SHIFT LEFT A[W]

THEN GO TO NRM23
0. — C[W]
A EXCHANGE C[X]
C+C — C[XS]
IF NO CARRY GO TO NRM29
A+1 — A[MS]
A .EXCHANGE C[X]
IF A[S] >=1

THEN GO TO MPY28
A EXCHANGE C[M]
C — A[W]
IFS8 #1

THEN GO TO NRM26

IF S6 # |

- THEN GO TO EXP31
0 —-86
1IF-S9.# 1

THEN GO TO XTY32
0 — CIW} ‘
P—1 —P
LOAD CONSTANT 5
GO TO MPY21
IFP-# 12

THEN GO TO LN35
0 — C[{W]
LOAD CONSTANT 2
LOAD CONSTANT 3
LOAD CONSTANT 0
LOAD CONSTANT 2
LOAD CONSTANT 5
LOAD CONSTANT 8
LOAD CONSTANT 5
LOAD CONSTANT 0
LOAD CONSTANT 9
LOAD CONSTANT 3
12— P
A-EXCHANGE C[W]
IF.S6 #-1

THEN GO TO PRE21
A~-C = C[W]
IF:B[XS] =0

THEN GO TO LN27
A—C — . C[W]
A"EXCHANGE B[W]
P—-1'—P
SHIFT.LEFT A[W]
IFP # 1 .

THEN GO TO LN28
A EXCHANGE C[W]
IF.C[S]=0 -

THEN GO TO LN29
0—-C~-1 —C[M
C+1 — C[X]
DISPLAY TOGGLE
I1'—-P-
GO TO MPY27
A — B[W].
C — A{M]
C+C — (XS]
IF. NO CARRY GO TO PRE24
C+1 — C[XS]
SHIFT RIGHT A[W]
C+1 — C[X]
IF.NO CARRY GO TO PRE22

3,863,060

47 48
ROM 2 —Continued
208 L2320 — . L2060 GO.TO PRE26
209 L2321 EXP35 IFP # 8
210 L2322 — L2152 THEN GO TO EXP34
211 12323 LNCD3 5—>p
212 L2324 LOAD CONSTANT 3
213 L2325: LOAD CONSTANT 3
214 L2326: g — P
215 L2327: LN35 B EXCHANGE C{W]
216 L2330: IFS6 # 1
217 L2331: — L2147 THEN GO TO PQO21
218 L2332 . SHIFT RIGHT A[W]
219 L2333: . P+1—P
220 L2334: . P+1—P
221 L2335 ... 1.11 — L2002 GO TO PMU24
222 L2336: .l.l.. — L1337 *rk Rk NRM26 SELECT ROM |
223 L2337: 11111110, PRE27 A+1 = A[M]
224 L2340: .1.11.111 — L2055 IF NO CARRY GO TO PRE25
225 L2341: 11.111110. LN24 A EXCHANGE B(S]
226 L2342; 1.L1.11. SHIFT RIGHT C{MS]
227 L2343; 111111111, A+1 = A[S]
228 L2344: .1.1111 — L2023 IF NO CARRY GO TO LN26
229 L2345: 11.1.1. XTY32 DOWN ROTATE
230 L2346; .1.1.1.. C - STACK
231 L2347: .11 MPY21 3 =P
232 L2350: 11101, MPY22 A+C —C[X]
233 L2351: L1 DIV2] A —-C = CiS]
234 L2352: HLIL.§IL — L2354 IF NO CARRY GO TO DIV22
235 L2353 LLillLL,) 0-C — C[S)
236 L2354: 11,1111, DIV22 A EXCHANGE B{W]
237 L2355: L11L111, 0 — A[W]
238 L2356: .1.11111. A — B[S]
239 L2357: IL.L1L. IFP # 12
240 L2360: l..1.11 — L2202 THEN GO TO MPY27
241 L2361 ... 11, IF B[M] =0
242 L2362 . 11 — L2000 THEN GO TO ERR21
243 L2363: IILIL.1. DIV23 A EXCHANGE C{WP]
244 L2364: HI1L11.11 — L2366 GO TO DIV1S
245 L2365 .1111..1. DIV14 C+1 —C[P]
246 L2366; 11..1.11 DIVIS A —B — A[MS]
247 L2367: 11111111 — L2365 IF NO CARRY GO TO DIV 14
248 L2370: 11l.L11. A+B — A[MS]
249 L2371: L SHIFT LEFT A[MS]|
250 L2372: . DIVi6 P—1 —P
251 L2373: IFP # 0
252 L2374: — L2366 THEN GO TO DIV1S
253 L2375: C - A[S]
254 L2376: A EXCHANGE C{W]
255 L2377: — L2211 GO TO NRM21
ROM 3

0 L3000: .1.11.1 —» L3106 FVR47 JSB ONE

1 L3001: FILL.11L. A EXCHANGE C[W]

2 L3002: [11..11.1 — 13343 JSB DIV

3 L3003: 1111 — L3024 GO TO FVR48

4 L3004: 1. 1. XTY I — S8

5 L3005 1.1 — L1006 ****x* SELECT ROM 1|

6 L3006: 1.1.1.. LN 0 —> S8

7 L3007: ..l.111 — L3011 GO TO SQRI

8 L3010: L..l. SQR 1 — S8

9 L3011 1.l — L1012 #***** SQRI SELECT ROM |

10 L3012: 111.1.1.1 — L3345 N46 JSB MPY

1l L3013: .1.1L.1 — L3106 JSB ONE

12 L3014: LIL.1.1 IFSIt # 1

13 L3015: 11111 — L3075 THEN GO TO N42

14 L3016: .1L1.1L.1 — L3153 JSB ADD

15 L3017: ... 1.1 - L3006 N44 JSB LN

16 L3020: 1l.l.1.. DOWN ROTATE

17 L3021: ... 1.1 — L3006 JSB LN

18 L3022: 1.1t — L3106 JSB ONE

19 L3023: L1111 — L3131 GO TO N48

20 L3024: 1011 FVR48 STACK — A

2] L3025 .1.1.1.. C = STACK

2 L3026: 1L.11.1.1 - L3331 JSB §12

23 L3027 L1110t — L3136 GO TO P47

24 L3030: L.111.1. FV40 0 — Sit

25 L3031 1.1 — L3314 GO TO FV46

26 L3032 .1.1.11 — L3104 PV40 GO TO PV41

27 L3033 11,1011 — L3312 PMT40 GO TO PMT42

28 L3034 QL1 — L3155 ROR40 GO TO FVR

2 L3035 NO OPERATION

30 13036 L0t N40 C — A[W]

i L3037 L. v DOWN ROTATE

N 13040: LELLETL — 13305 -GO TG N41

Vi Lwd NS IFS4 #1

i (R A F AR T > 13304 THEN GO TO SELR4

18 Pt TKRR 3 KEYS = ROM ADDRESS

0 1 30 . NO OPERATION

3 1.3045: 1LLE. CASHI DOWN ROTATE

M 1.3046; LIt C EXCHANGE M

l 1.1

L3047

DOWN ROTATE

, 3,863,060
49 50
ROM 3 —Continued ’

111

L3050: o C > STACK

L3051: L3103 JSB R100

L3052: - L3153 JSB ADD

L3053; STACK —> A
-L3054; C-—>STACK

L3055: : A EXCHANGE C[W}
L3056 L3106 JSB ONE .
L3057: 13153 JSB ADD

L3060: 1.3004 JSB XTY

L3061: DOWN ROTATE
L3062: C — STACK
L3063: DOWN ROTATE
L3064: DOWN ROTATE
"L3065: A EXCHANGE C{W}
. L3066: —» 1.3343 JSB DIV

L3067: M—C

L3070: —» L3153 JSB ADD

L3071: R13 0 —S10

L3072: 0 — Si1

L3073: — L3115 GO TO R14

L3074: NO OPERATION
L3075: N42 A EXCHANGE C[W]
'L3076: — L3152 JSB SUB

L3077: A EXCHANGE B[W]
L3100: — L3343 JSB- DIV

L3101: — L3017 GO TO N44

L3102: ; NO OPERATION
L3103: ‘=> L1104 *¥**x R]00 SELECT ROM |
L3104: PV41 0 —S11

L3105 — L3110 GO TO PV42

L3106: — L1107 *+x3+x QNE SELECT ROM 1
L3107: . PV46 1 = Sltl1

L3110: - 13321 PV42 JSB CSN

L3t11: — L3103 PV49 JSB'R100

L3112: —» L3153 JSB ADD

L3113: — L3330 JSB ROT1

L3114: —-L3116 GO TO PV48

L3115: — L0116 ***** R4 SELECT ROM 0
L3il6: — L3004 PV48 JSB XTY

L3ng: — L3106 JSBONE . .
L3120: . A EXCHANGE C{W]
L3121 PVv43 IFSIO# 1 .
L3122: — 1.3134 THEN GO'TO PV44
L3123 — L3152 JSB-SUB

L3124: DOWN ROTATE
L3125: DOWN ROTATE
L3126: DOWN ROTATE
L3127: IFSIt #.1
L3130 - L3132 : THEN GO TO PV45
L3131 N48 A EXCHANGE C[W]
L3132: —» L3343 PV45s JSB DIV

L3133: STACK — A
L3134: PV44 STACK — A

L3135: . STACK .— A

L3136 — L3345 P47 JSB MPY

L3137: — L3071 GO TO R13

L3140: CASH IFS10 # 1

L3141: — L3045 THEN GO TO CASH|1
L3142; 0 -S4

1.3143: — L4144, wxkxk SELECT ROM 4
L3144 FVR49 C+1 — C[X]
L3145: — L3343 : JSB DIV

L3146 1. — L3106 JSB ONE

L3147: . — L3153 JSB ADD

L3150: . . STACK — A
L3151 . —» L3167 GO TO FVR43
L3152: Sl — L1153 #***%x- SUB SELECT ROM'|
L3153 . —- L1154 *+4*%x° ADD SELECT ROM'|
L3154 . —> L1155 *w**xx ADDI1 "SELECT ROM 1
L3155 1. FVR IF-Sil1 # 1

L3156 1 —» 113340 THEN GO TO FV42
L3157: 11111 0 —Sl1

L3160: 1110 IFS10 # 1

L3tel: 1.111.1111 -» 13273 THEN GO TO FVRI1
L3162: 1101 .. — L3321 FVR3 . IJSBCSN

L3163: SRR I 0—~C—-1— CfS]
L3ted: N £ 1S oW FVR2 : C ~» STACK
L3165 AL STACK ~—» A
Li166: | B 0% DR O DOWN ROTATE
L3167: 111,11 ~>» 13343 FVR43 : JSB DIV

L3170: IS 1 1 O C EXCHANGE M:
L317L: .11 DOWN: ROTATE
L3172: 1Ll C —STACK
L3173 Aol — L3106 JSB.ONE

L3174 1Lk — L3153 JSB:ADD

L3175 1i.. 11T A EXCHANGE B[W]

L3176: 1. ~» L3345 JSB MPY

L3177: P8 19 19 PO C EXCHANGE M

L3200: AT : STACK. —~> A

L3201 N I 1 N C —STACK

L3202: [N - 13321 JSB CSN

1.3203: [REFS b DOWN: ROTATE

3204: . .11.1.1..1 — L3152 JSB SUB -

L3205 ALLYLY - L3153 JSB ADD

3,863,060

52

51
ROM 3 —Continued

134 L3206: C EXCHANGE M
135 L3207: - 13343 JSB DIV
136 L3210 C EXCHANGE M
137 L3211 FVR44 DOWN ROTATE
138 L3212: C EXCHANGE M
139 L3213:) STACK — A
140 L3214: — L3106 JSB ONE
141 L3215 — L3153 JSB ADD
142 L3216: C — STACK
143 L3217: C — STACK
144 L3220: B — C[W]
145 L3221 C EXCHANGE M
146 L3222: — 13004 JSB XTY
147 L3223 DOWN ROTATE
148 L3224: . C — STACK
149 L3225: . — 13345 JSB MPY
150 L.3226: . B — C{W]
151 £3227: DOWN ROTATE
152 L3230: DOWN ROTATE
153 L3231: . —13343 JSB DIV
154 L3232 DOWN ROTATE
155 L3233 DOWN ROTATE
156 L3234: . — L3106 JSB ONE
157 L3235: . — L3152 JSB SUB
158 L3236: M~ C
159 13237 . — 13343 JSB DIV
160 13240 P DOWN ROTATE
161 L3241: A DOWN ROTATE
162 L3242 LI — L3152 JSB SUB
163 L3243: Lt STACK — A
164 L3244: .1.1.1.. C — STACK
165 L3245 1.1.011. B EXCHANGE C[W]
166 L3246: LI — L3153 JSB-ADD
167 L3247 WL DOWN ROTATE
168 L3250: . . B EXCHANGE C[W]
169 L3251 L DOWN ROTATE
170 L3252: " . B EXCHANGE C[W]
171 1.3253: Il —13343 JSB DIV
172 L3254: Tl M- C
173 L3255: WL — 13345 JSB MPY
174 L3256: AR C EXCHANGE M
175 . L3257: ARER — L3153 JSB ADD
176 L3260: .1.1.1.. C EXCHANGE M
177 L3261: .11..111. C - A[W]
178 L3262: 111.11..1 — L3354 JSB TEN6
179 L3263: 1.1111.1. IF A[XS]>=1
180 L3264: L1111 —1.3322 THEN GO TO FVR46
181 L3265: L.1.111 — 13211 GO TO FVR44
182 L3266: I11..1.1.1 — L3345 FVR49 JSB MPY
183 L3267: 1L11.1.1 —L3331 : JSBS12
184 ‘L3270 111001 C+1 — C[X]
185 L3271 Lil..b. 1 > Sl
186 L3272 1110 — L3144 GO TO FVR49
187 L3273 1111 FVRI STACK — A
188 L3274: 1LLILL A EXCHANGE C[W]
189 1.3275: 111111 —1.3343 JSB DIV
190 L3276: 0L STACK — A
191 L3277: .i.L1. C — STACK
192 L3300: 1111111 A EXCHANGE C({W]
193 L3301: .1.11.1 ~ L3106 JSB ONE
194 L3302: 11L1.111. A EXCHANGE C[W}
195 L3303: 1t1..11.1 —13343 JSB DIV
196 L3304: .. 1.1 — 13304 JSB XTY
197 L3305: .1.11.1 —13016 JSB ONE
198 L3306: .11.5.1..1 —13152 ISB SUB
199 L3307: .111L.1.1 C+1 — C[X]
200 L3310: .1111.1.1 C+1 — C[X]
201 L3311: .111.1.1 — L3071 JSB R13
202 £L3312: L1LLL. PNT42 IFSH # 1
203 L3313: .1.11111 — 13107 THEN GO TO PV46
204 L3314: LI.L.1. FV46 IFSI10 # 1
205 L3315 .1.1.111 —L3111 THEN GO TO PV49
206 L3316: 11111, 0—C—1 — C[S]
207 L3317: 1.1.1 —L3111 JSB PV49
208 L3320: . NO OPERATION
209 L3321 1.l — L1322 ***xx CSN SELECT ROM 1
210 L3322: LILIL.t. FVR46 IFSIL # 1
211 L3323 111,111 — L3071 THEN GO TO R13
212 L3324 1L.1.1. DOWN ROTATE
213 L3325 1l.L.1. DOWN ROTATE
214 L3326: tl.1d.. DOWN ROTATE
215 L3327: ... 1 — 13000 GO TO FVR47
216 L3330 .1l —L1331- ****x ROTI SELECT ROM 1
217 L3331 LTI S12 0 — C|W]
218 RETEIN D C+1 — C[P]
219 AT C+1 = C[S]
220 NS C +C —-» C|WP]
22 L1, SHIFT RIGHT C[MS}
o L.333: .H1Ld. C+1 — C[X]
23 L3 Ll RETURN
224 L3330 LI Fv42 IFSI0 # 1
228 L33 LT —13346 THEN GO TO FVR4
226 L3342 — L3164 GO TO FVR2
227 13343 1.1 SELECT ROM 1

— L1344 xxxs pIV

3,863,060

53 . 54
- ROM 3 — Continued
228 L3344: ..11... TRNI16 RETURN
229 L3345: .1.1.. ~ L1346 ***%x MPY SELECT ROM 1
230 L3346: 11L1111. FVR4 A EXCHANGE C[W]
231 L3347: 11.1l.. DOWN ROTATE
232 L3350: .l.l:l. C — STACK
233 L3351: IS 1% P C — STACK
234 L3352: 1 S o C — STACK
235 ‘L3353: LILIL1L — 13266 GO TO FVR9
236 L3354: LlL.L.1.. TEN6 M:—C
237 L3355: .11, C+1 —.C[X]
238 L3356: .1111:0.1. C+ 1 — C[X]
239 -L:3357: 1HITLLL A+ — A[X]
240 L:3360: 11111.1.1 A+ — A[X]
241 L3361: 11111.1:1 A+ = A[X]
242 L3362: 1111 A+1 — A[X]
243 L£3363; ..ll.. RETURN
244 L3364: l..l.. —1.4365° ****+. SELR4 SELECT:ROM 4.
245 L3365 111..11.1 —1.3343 N41 ISB-DIV ¢
246 L3366: .1..11.1 ~»1:3103: JSB.R1000
247 L3367: .1L.1:11.1 —L3153- JSB-ADD
248 L3370: 11,11 DOWN ROTATE
249 L3371: 1Ll STACK —- A:
250 L3372: .11 STACK —- A
251 L3373: . L0011, B.EXCHANGE C[W]
252 13374 1111111 A EXCHANGE C[W]
253 L3375: L.l IFS10 # 1
254 L3376: ...111111 —L3017 THEN-GO TO N44.
255 L3377: ... Ll L3012 GO TO N46
ROM4:
0 L4000: .. - L0001 #*xx%. ERROR SELECT ROM 0
1 L4001: . NO OPERATION
2 L4002: . NO OPERATION-
3 L4003: . —L3004. Hxxdx XTY : SELECT'ROM:3:
4 L4004: ..11... RETURI; : RETURN
5 L4005: ..111..1 —» L4016 SOD2 : JSBDOWN3
6 L4006: .111..1.. 1'—.87
7 L4007; - .1.1.1. 0 —.S4:
8 L4010: .l..1i.1: — L4106 JSB ONE
9 L4011 L1110 — 14153 JSB'ADD
10 40120 .1..111 14041 GO 'TO SOD3
1" L4013: A STAI STACK — A..
12 L4014: C —.STACK
13 L4015: RETURN
14 L4016:. . DOWN3 DOWN .ROTATE
15 L4017: DOWN2 DOWN ROTATE
16 L4020: i DOWN ROTATE
17 L4021: RETURN
18- L4022; IF S5 #:1
19 L4023: — L4004 THEN GO TO RETURI
20 L4024: ~> 150251 wekEx SELECT.ROM 5
21 1.4025: SOD IF S7 #-1
22 L4026: —1.4005- THEN-GO TO SOD2
23 L4027: - 14037 GO TO SOD6
24 L4030; 1 ~ 14000 FV. GO TO ERROR
25 L4031: . NO OPERATION.
26 L4032: — 15033 *¥*%k PV SELECT ROM 5
27 L4033: A1 — L4366 PMT GO TO DNOTEI
28 14034: L. R 1 — 85
29 L4035: bL1ul... — L5036 *rEx+ SELECT:ROM 5
30 L4036: ... 11 — L4000 N GO TO ERROR.
34 L4037: .l1..1.1. SOD6 IF.-S4 #-1
32 L4040: 11111111 — 14347 THEN GO TO SODI1
kK] L4041: 11,060 SOD3 DOWN ROTATE
34 L4042: L1011 SODS5 0 — S4
35 L4043 a1 STACK —. A
6 L4044: 11,11 DOWN ROTATE:
37 L4045: .1L..111; C — A[W]
38 L4046: ...1111.1 — L4017 JSB DOWN2'
39 L4047: 11111 — L4152 JSB'SUB
40 L4050: .11 — L4013: JSB STAL
41 L4051: . .1.11.1 —>1.4106.. JSB ONE.
42 L4052: 111111 ~ L4132 GO TO SOD4
43 L4053: .11 — 1.4025° DEPR. GO TO SOD
44 L4054: .111:1.0.. TRNDI IFS7 #.1
45 14055: - .11.1:11: —1.4062" THEN GO TO TRNDS
46 L4056: .l1.1:1.. IF. S4. #:1
47 L4057 1111111 — 14155 THEN GO TO TRND3
48- L4060 .1.1.1. 0 — S4:
49 : L4061: L.11.111 — 14231 GO TO TRNDS:
50 L4062; M.t TRNDS 1.— §7
51 L4063 L IF. S4: #:1
52° L4064: 1201111 — 14107 THEN-GO TO TRND4.
53 L4065: B N 0.— .84
54 L4066; - 1.1:1.. DOWN ROTATE
55 L4067:. 1.1:1.111 — 14225 GO TO TRND2
56 . L4070: .1l.b... —L3071 *x4%- R13 SELECT ROM 3
57 L4071: 1ILLA1L L360 . A:EXCHANGE C[W/]
58 L4072: L11a0bL 0 —.C{W}:
59 ‘L4073: 10 LOAD CONSTANT:3
[L4074: .11.10.

LOAD CONSTANT:6

3,863,060

55
ROM 4 —Continued
61 L4075: 111111, C+1—> C[X]
62 L4076: .1111.1.1. C +1— C[X]
63 L4077: ...ll... RETURN
64 L4100: .1L.1.1.1 — L4152 DNOTE4 : JSBSUB
65 L4101: ..LI1L1 — L4013 JSB STAI
66 L4102: Ll.1.. — L5103 xeexk SELECT ROM 5
67 L4103: .l.l.. — L1104 **#** RI00 SELECT ROM |
68 L4104: 1111, TRND6 DOWN ROTATE
69 L4105: .11l.11 — L4070 GO TORI13
70 L4106: ..1.1... — L1107 ***** ONE SELECT ROM 1
7 L4107: .I1L.1.. TRND4 1 — S7
72 L4110: ..1.1L1 -» L4013 JSB STAI
73 L4tll: 11LLI1L A EXCHANAGE C{W]
74 L4l12: .I.1i.1 —-> 14106 JSB ONE
75 L4113 .ILLILL —> L4153 JSB ADD
76 L4114 11.L1.. DOWN ROTATE
77 L4115 .1.Ll.. C — STACK
78 L4116: 111,111 —> L4345 JSB MPY
79 L4117 1101 DOWN ROTATE
80 L4120: L.LI111. B EXCHANGE C| W]
81 L4121: 1.1, DOWN ROTATE
82 L4122: 110111, TRND9 A EXCHANGE B[W]
83 L4123: 1LLILI ~> L4153 JSB ADD
84 L4124: 1111 DOWN ROTATE
85 L4125: .ILL.1. STACK — A
86 L4126: 111111 — L4153 JSB ADD
87 L4127: * .1.1.L.. C ~— STACK
88 L4130: ..1111.1 — L4017 JSB DOWN2
89 L4131: .11 — L4070 GO TO RI3
90 L4132 LiLLIL1 - L4153 SOD4 JSB ADD
91 L4133: LIl M= C
92, L4134: H1L.L11 —> L4345 JSB MPY
93 L4135 .i1.11L1 — L4153 JSB ADD
94 L4136 ...L111 — L4013 JSB STAI
95 L4137 LLLLIL B — C[W]
96 L4140: J1l.10d — L4345 JSB MPY
97 414l Ll — L4013 JSB STAI
98 L4142: 1111110 A EXCHANGE C[W]
99 L4143 11111 — L4070 GO TORI13
100 L4144; . LL1.. , INTER C EXCHANGE M
101 L4145: .1..111 — L4103 JSB R100
102 L4146: 1.1.1.1. M—C
103 L4147: 1ILI.11L A EXCHANGE C[W]
104 L4150; .1.1.1.. C EXCHANGE M
105 L4151: L1..L11 —» L4242 GO TO INTER}
106 L4152: .l1.l.. —> L1153 ***xxx SUB SELECT ROM |
107 L4153; .l.1... — L1154 = ***** ADD SELECT ROM 1
108 L4154: .l.l.. — L1155 **x*x ADDI SELECT ROM |
109 L4155: ..LIL.1 — L4013 TRND3 JSB STAL
110 L4156: .1.1.1.. C — STACK
11 L4157: 111..11.1 —L4343 JSB DIV
112 L4160: 11.1.1... DOWN ROTATE
113 L4i6l: .1.11.1 — L4106 JSB ONE
114 L4162: 111111 — L4153 JSB ADD
115 L4163: .1.111) B — C[W]
116 L4l64: 11,11 DOWN ROTATE
117 L4165: 1il1.1.1.1 — L4345 JSB MPY
118 L4166: 1111 STACK — A
119 L4167: 111011 — L4343 JSB DIV
120 L4170: .1L.L.1L1 — L4153 JSB ADD
121 L4171: 1.1 DOWN ROTATE
122 L4172: .1.L1.. C — STACK
123 L4173: .1L1.1.1 — L4152 JSB SUB
124 L4174: 1LL1L1 — L4153 JSB ADD
125 L4175: 11,0110, A EXCHANGE B{W|
126 L4176 100111 > 14153 JSB ADD
127 L4177: 000 — L4016 JSB DOWN3
128 L4200: L1100 — L4106 JSB ONE
129 L4201 .1L1.1.1 — L4152 JSB SUB
130 L4202: 1LIL.1.. STACK — A
131 L4203: HIL.11.1 — L4343 JSB DIV
132 L4204: .ILLILI — L4153 JSB ADD
133 L4205 WLl DOWN ROTATE
134 L4206 NN A EXCHANGE B{W]
135 L4207 L — L4152 JSB SUB
136 L4210 Al STACK — A
137 L4211 A1 — L4013 JSB STAI
138 L4212 1. B — C[W]
139 L4213 . —> 14345 JSB MPY
140 L4214 STACK — A
141 L4215 — L4153 JSB ADD
142 L4216 0—-C—1— C[S]
143 L4217 C EXCHANGE M
144 L4220 0 — C[W]
145 L4221 C —» STACK
146 L4222 M-> C
147 L4223 C = STACK
‘148 L4224 — L4104 GO TO TRND6
149 L4225 — L4106 TRND2 JSB ONE
150 L4226 — L4153 JSB ADD
151 L4227 : C — STACK
152 L4230 C — STACK
153 L4231 TRNDS8 “STACK — A
154 L4232 STACK — A

3,863,060

57 58
ROM 4 —Continued

155 L4233: 11111, , C — A[W]
156 L4234: .. 11111 —L4017 JSB DOWN?2
157 L4235 111111 —» L4345 ISB MPY
158 L4236: L.1.1.1.. ' M~ C
159 L4237: .1LIL.I1.1 — L4153 JSB ADD
160 L4240: ..1.11.1 — L4013 JSB STAI
161 L4241: 1. 1.1 > L4104 GO TO TRND6
162 L4242: 1.LIL1.. INTERI M= C
163 L4243: “111..11.1 — 14343 JSB DIV
164 L4244: 11.1.1.. DOWN ROTATE
165 L4245: .11.1.1... STACK — A
166 L4246: .11.1.1..1 — L4152 ISB SUB
167 L4247: ..LI1L1 — L4013 JSB STAI
168 L4250: 11, , B — C[W]
169 L4251: .ILLL — 14152 ISB SUB
170 L4252: .L1.I. C EXCHANGE M
171 L4253; 1.1 ~> L4106 JSBONE
172 L4254 RiR N -» L4153 ISB ADD
173 L4255 1.1l C — STACK
174 L4256 .1.1.1... C EXCHANGE M
175 L4257: .10l - L4003 JSB XTY
176 14260: .l1.1.1... C EXCHANGE M
177 L4261: .1..11..1 — 4106 JSB ONE
178 L4262: .11.1.1.1 — L4152 JSB SUB
179 L4263: ..L111 — L4013 JSB STAI
180 L4264: 111..1.1.1 —> L4345 JSB MPY
181 L4265: ll.l.1.. DOWN ROTATE
182 L4266: .1..I0.1 . — L4106 JSB ONE
183 L4267: .11.1.11.1 — L4153 JSB ADD
184 L4270: ...L.11.1 — L4013 JSB STAI
185 L4271 HLLILL A EXCHANGE C[W]
186 L4272 .. 11.1 —> L4003 ISB XTY
187 L4273: CILI.1.. STACK — A
188 1.4274: .1.1.1... C EXCHANGE M
189 L4275: .1.11.1 ~ 14106 JSB ONE
190 L4276: .I1.L1.] — L4152 JSB SUB
191 L4277: LL11.. M~ C
192 L4300: 111,111 — 14345 JSB MPY
193 L4301: ..1.L1.. C EXCHANGE M
194 L4302: .l1.11.1 - L4106 JSB ONE
195 L4303: .1L1:1.1 — L4152 JSBSUB -
196 L4304:. 11.1.1... , DOWN ROTATE
197 L4305: .i11110L 0-C—1— C[S]
198 L4306: .l.1.1... C — STACK
199 L4307: . 111111 — L4345 JSB MPY .
200 L4310: LL.L1... DOWN ROTATE
201 L4311: 111l STACK — A
202 L4312: .IL1.... STACK — A
203 L4313: .LLL. C EXCHANGE M
204 L4314: .I1.1.1.1, —. L4152 JSB'SUB
205 L4315: LLILI.. M — C
206 L4316: I11.1.1.1 -> 14345 JSB MPY
207 L4317: .1l1..1] — . L4070 GO TO R13
208 L4320: 111.1.1.1 —>.1.4345 DNOTE3 : ISBMPY
309 L4321 .1.LI.. C EXCHANGE M
210 L4322: 1104 STACK — A
2N L4323 .11k ~ L4013 JSB STA1
212 L4324: L1101 — 14071 JSB L360
213 14325: 1101 12> p
214 L4326: 111111 — L4343 ISB- DIV
215 L4327: 11,01, DOWN ROTATE
216 L4330: .111.1%1 — L4071 JSB L360
217 L4331 1Ll LOAD CONSTANT 5
218 L4332: tl..11. 12— P
219 L4333: itl..11.1 — 14343 JSB DIV
220 L4334: .11} —. L4013 JSB STALI
221 L4335: .1L1.1.1 — L4152 JSB'SUB
222 L4336: ..1111.1 —.1:4017 JSB DOWN2
223 L4337: .ILLI. STACK = A .
224 L4340: L1111, A EXCHANGE C[W]
225 L4341: .1.1.1.. C —> STACK
226 L4342: .)..11 ~>.14100 GO TO DNOTE4
227 L4343: .l.l1.. —>-L1344. ***x+ DIV SELECT ROM |
228 L4344: . NO OPERATION
229 L4345: .l.d.. — L1346 ***x* MPY SELECT ROM 1
130 L4346; - .T.1.. —> L1347 **x*xx - TEN6 SELECT ROM 1
231 L4347 .1.1.L. SOD1 0— S4
232 L4350; .1.L.1. C EXCHANGE M
233 L4351 1L.1.1.. DOWN ROTATE
234 L4352; .1.1.1.. C — STACK
235 L4353 .lL.L.l.. C — STACK
236 L4354: 1.11.1 —.L4106 JSB ONE
237 L4355: .1L.L.11.1 — L4153 JSB'ADD
238 L4356: 1..1.111. B EXCHANGE C{W}
239 L4357: 111.0.0.1 — L4345 JSB MPY.
240 L4360: .L1.1.. C EXCHANGE M:
241 L4361: 1111111 A EXCHANGE C[W]
242 L4362: L1111 —>. L4343 JSB'DIV
243 L4363 L10L1 C EXCHANGE M:
244 L436d: .1.1.11 — 14042 GO TO SOD5 :
245 L4365 LIL1.. : SEL4 KEYS — ROM'ADDRESS
246 L4366: .1.1.1.. DNOTE! 0— S4
247 L4367: .i.Ll. C EXCHANGE M.
248 L4370: 100 — L4103

JSB R100

3,863,060

59 ‘ 60
'ROM 4—Continued
249 L4371 1111111, Co A EXCHANGE C{W]
250 L4372: .1.lL.1L.. C — STACK
251 L4373: 111011 — L4343 : JSB DIV
252 L4374 .1L1L.1.. STACK — A
253 L4375: 1l.L1.. - DOWN ROTATE
254 L4376: .1.1.1.. C EXCHANGE M
255 L4377: 1l.1..11 — 14320 : GO TO DNOTE
ROM 5
0 L5000: ... NO OPERATION
1 L5001: NO OPERATION
2 L5002 —> L4003 kxrkx XTY : SELECT ROM 4
3 L5003 S182 : ©~ DOWN ROTATE
4 L5004 C — STACK
s L5005 A EXCHANGE C[W]
6 L5006 C — STACK
7 L5007 0 = C[W]
8 L5010 LOAD CONSTANT 1
9 L5011 LOAD CONSTANT 8
10 L5012 LOAD CONSTANT 2
11 L5013 LOAD CONSTANT 5
12 L5014 LOAD CONSTANT 0
13 L5015 S185 ;. C+1— CIX)
14 L5016 C+1— CX]
15 L5017 12> p
16 L5020: ... RETRS : RETURN
17 L5021 . S180 ;0> C[W]
18 L5022: ..1. LOAD CONSTANT |
19 L5023 . LOAD CONSTANT 8§
20 L5024: .. —> L5015 GO TO S185
21 L5025 . IFSI0 # 1
22 L5026: .. — L5030 THEN GO TO SEL6
23 L5027: .. RETURN
24 L5030 . L6031 wHxex SEL6 . SELECT ROM 6
25 L5031 . NO OPERATION
26 L5032: .. NO OPERATION
27 L5033: .1 BONDI : 1 — S5
28 L5034: 111, —> L5105 JSB ONE
29 L5035: .1L11.111 — L5155 GO TO BOND3
30 L5036: .11111..1 — L5076 BONDR!I : JSB STAI
31 L5037 NI 1 — SI1
32 L5040: .1.1.111. A — B{W]
33 L5041 REPRTEN C — A[W]
34 L5042: .1L11..1 — L5154 ISB ADD1
3s L5043 Nt A EXCHANGE B[W]
16 L5044 I IR — L5343 JSB DIV
37 L5045: 100, C EXCHANGE M
R L5046 0.1 — L5102 JSB R100
kI 1.5047 LR, A EXCHANGE C[W|
40 L5050: H1.00.0 — 15343 JSB DIV
41 L5051 ... 1.1 - L5003 . JSB S182
42 L5082: 111111 — L5343 JSB DIV
43 L5053: i1l IFC[XS] >=1{
44 L5054: .1.1t1.11 — L5134 THEN GO TO BONDR2
45 L5055 .11L1.1 — L5072 JSB DOWN2
46 L5056: L.1.1.1.. M—C
47 L5057: 11011, BON2 : . DOWN ROTATE
48 L5060:. 1.1.1.1... BONDR3 : M — C
49 L5061: .1..1.1.1 ~ L5105 JSB ONE
50 L5062: .11.1.11.1 —> L5153 ISB ADD
51 L5063: .11111..1 - L5076 JSB STAI
52 L5064: 1111011, A EXCHANGE C[W1
53 L5065 1.11..111 — L5261 GO TO BONDR?
54 L5066: - .11.1.1...) DNOTE2 : STACK — A
55 L5067: .1.il.1. R13 0 —> S5 -
56 L5070: .11.1.. —> L3071 »xkxx SELECT ROM 3
57 L5071: 1.1l DOWN3 : DOWN ROTATE
58 L5072: 1l.1.1... DOWN2 : DOWN ROTATE
59 L5073: 1l.l.i.. DOWN ROTATE
60 L5074: .01l RETURN
61 L5075: 1i.l.l.. STA2 : DOWN ROTATE
62 L5076: .11.1.1... STAI : STACK — A
63 L5077: .L.l.1.. C — STACK
64 L5100: ..11.. RETURN
65 L5101: .. NO OPERATION
66 L5102: . —> L4103 Hwkwk R100 : SELECT ROM 4
67 L5103: .L1.1. DNOTES : | — S5
ox L5104: .1..1LI1 — L5106 GO TQ DNOTE6
69 L5105 ... —> L4106 *#*xx ONE : SELECT ROM 4
70 L5106: L1.L1.. DNOTE6 : M — C
71 L5107: 11104 — 15345 JSB MPY
72 LS 1l = L5102 JSB R100
73 ESELE: HLLLtL A EXCHANGE C[W]
74 LS00 HL.d . > L5343 JSB DIV
75 LA1EY: LHITLEd - L5075 JSB STA2
70 LSTL: L, M- C
77 L5115 b1 hd — L5345 i JSB MPY
78 L5116: 101 - L5102 JSB R100
79 L5117 LR, A EXCHANGE C{W|
80 L5120 110 — L5343 JSB DIV
81 L5121 .., o DOWN ROTATE
82 L5122 LILLL. _ ‘ IFSI1 # 1

3,863,060
61 62
_ROM 5 Continued

83 L5066 THEN GO TO DNOTE2
84 —' L5067 GO TORI13
85 IT1 : DOWN ROTATE
86 C = A[W]
87 » T2 :IF A[XS] >=1
88 —L5020 THEN GO TO RETRS
89 A—1 - A[X]
90 SHIFT LEFT A[M]
91 — L5127 . GO TO'IT2
92 " BONDR2 : STACK - A
93 M —C
94 —L5153 JSB ADD
95 - —>» L5076 JSB STAL
96 -—>'£.5021 : JSB S180
97 —:[.5343 JSB:DIV
98 L5108 JSB ONE
99 — L5152 JSB SUB
100 B'EXCHANGE C[W]
101 C EXCHANGE M
102 0-C~1 — C[S]
103 — L5345 JSB MPY
104 — L5105 JSB ONE
105 — L5331 GO TO BONDRS
106 =¥ LI1S3 ook " SUB : _SELECTROM I
107 = L1154 **kxx ADD : SELECT ROM 1
108 —» LI5S *¥x&x ADDI1 : SELECT ROM 1
109 BOND3 : C+C — C[W]
110 ~> L5343 . JSB DIV
11t . ’ C EXCHANGE M
112 —» L5102 JSB R100
113 —-L5003 JSB S182
114 —» L5343 JSB DIV
1S) IF-C[XS] >= 1
116 —» L5232 THEN GO TO BOND2
117 —' L5075 JSB'STA2
118 —» L5105 JSB ONE -
1Yy C+C —> C[W]
120) A EXCHANGE C[W]
121 — L5153 JSB ADD
£22 . B —. C{W]
123 —» L5343 . JSB DIV
124 DOWN ROTATE
i25 STACK. — A
126 DOWN ROTATE
127 0—-C—-1 - C[S]
128 —» 1.5002 JSB XTY
129 ~» L5125 - JSBIT1
130 : A EXCHANGE C{W]
131 — L5105 JSB ONE
132 —'L5153 . JSB ADD’
133 ~»-1.5002 JSB'XTY
134 ~» L5071 ' JSB DOWN3
135 —» L5076 ISB:STA
136 ~» L5152 JSB SUB
137 — L5153 JSB ADD
138 M:—C
139 — L5345 JSB'MPY
140 DOWN-ROTATE
141 -~ L5015 JSB S§185
142 -~ DOWN ROTATE
143 - C > A[W]
144 M= C
145 — L5345 JSB MPY
146 DOWN ROTATE
147 STACK — A
148 — L5343 JSB DIV
149 STACK — A
150 — L5153 JSB' ADD)
151 DOWN ROTATE
152 — L5152 JSB:SUB
153 — L5067 GO TORI3
154 — L5075 BOND2. : JSBSTA2
155 —» L.5021 JSB §180
156 —» L5343 JSB DIV
157 DOWN ROTATE
158 —» [.5345 . JSB MPY.
159 —» L5105 JSB ONE
160 C+C — C[W]
lol — L5153 . JSB: ADD
162 C.EXCHANGE M
163 — L5105 JSB'ONE
164 - L5015 JSB S185
165 - L5153 JSB'ADD
106 B —¥ C[W])
167 C EXCHANGE M
168 — 1.5343 JSB:DIV
169 — L5153 JSB ADD
170 — L5071 . JSB:DOWN3
171 - LS105 JSB'ONE
172 ~ L5152 JSB-SUB
173) C EXCHANGE M
174 > 1.5345 JSB:MPY:
175 o DOWN ROTATE
176 — L5376 GO TO BONDR6

3,863,060

63 64
ROM 5—Continued
177 L5261 ... 1.1 —1.5002 . BONDR7 : JSB XTY
178 L5262: .1..1.1.1 — L5105 JSB ONE
179 L5263 11111 — L5152 . JSBSUB
180 L5264 LIt — L5330 JSB ROTI
181 L5265: .111.1.1 ~— L5071 JSB DOWN3
182 L5266: .11.1.1..1 — L5152 JSB SUB
183 L5267 11111 ~ L5330 JSB ROT!
184 L5270 .11, DOWN ROTATE
185 L5271 HLELLEL A EXCHANGE C[W]
186 L5272 1.1 — L5343 JSB DIV
187 L5273 L11.1.. M—> C
188 L5274 1L — L5345 JSB MPY
189 L5275: .11111.1 — L5076 JSB STAI
190 L5276: .1LL.IL1 — L5153 JSB ADD
191 L5277: 1Ll STACK — A
192 £5300: .111.1..1 — L5072 JSB DOWN2
193 L5301 NI ' . B > C[W]
194 L5302: ..1111.1.1 — L5075 JSB STA2
195 L5303 LI M—>C
196 L5304: .1L.1.11.1 — L5153 JSB ADD
197 L5305: .1.1.1.. C EXCHANGE M
198 L5306: ..1..111. B = C[W]
199 L5307: ...11.1.1 — L5015 JSB S185
200 L5310: ..1L.1.1 — L5015 JSB S185
201 L5311 BNIN R - L5015 JSB S185
202 L5312: - L1110, IF C(M] =0
203 L5313 LT —'L5316 THEN GO TO BONI
204 L5314: L1100, IF C[XS] =0
205 L5315 Al — L5060 THEN GO TO BONDR3
206 L5316 Lildd.. BON! : IFSIL #1
207 L5317 ML —» L5373 THEN GO TO BONDR4
208 15320 LI 0 - SI1
209 L5321 .01 DOWN ROTATE
210 L5322 1010, : C —» STACK
211 L5323 .LLL1.1 — L5125 JSBITI
212 L5324 L, A EXCHANGE C[W}
213 L5325: .L.lL.1.1 — L5105 JSB ONE
214 L5326: .11.1.1.1 - L5152 JSB SUB
215 L5327 111..11.11 — L5346 GO TO BONDRY
216 L£5330: .1.1... —> L1331 *eaxx ROTI : SELECT ROM |
217 L5331 RINNEN — L5153 BONDRS : JSB ADD
218 L5332: .il.lL.l. STACK — A
219 L5333 L — L5343 JSB DIV
220 L5334: .1..1.1.1 — L5105 JSB ONE
221 L5335 .IL1.01..1 — L5152 JSB SUB
222 L5336 Li.0.. M- C
223 L5337 1.1 — L5343 JSB DIV
224 L5340 [RETRR NS — L5374 . GO TO BONDRS
225 L5341: ... NO OPERATION
226 L5342: ... __ NO OPERATION
227 L5343: .l.t.. —> L1344 #¥xxx DIV : SELECT ROM |
228 L5344 R NO OPERATION
229 L5345 .l.l.. —> L1346 *x*xx MPY : SELECT ROM |
230 L5346: 1.1, BONDRY : B — C[W]
231 L5347 11111 — L5345 JSB MPY
232 L5350 L1110, M- C
233 L5351 L ~> L5345 JSB MPY
234 L5352: L1111 — L5072 JSB DOWN2
235 L5353 11111, C — A[W]
236 L5354 L1111 — L5072 JSB DOWN2
237 L5355 111111 — L5345 JSB MPY
238 L5356: .1..LL1 —> L5105 JSB ONE
239 L5357 LI, C+C — C[W]
240 L5360 INANRETR A EXCHANGE C[W]
241 L5361 JLLEL — L5153 JSB ADD
242 L5362: ..1.111 - B — C[W]
243 L5363 11,011 — L5343 JSB DIV
244 L5364: ..11111..1 - L5076 : JSB STAI
245 L5365 11111 . —> L5345 JSB MPY
246 L5366 .11 DOWN ROTATE
247 L5367: .1L1.1.. STACK — A
248 L5370 111 —~ L5345 JSB MPY
249 L5371 gl C — STACK
250 L5372: .L111111 — L5057 GO TO BON2
251 L5373 L1111 BONDR4 : M — C
252 L5374: ..11.1.1 — L5015 BONDRS : JSB S185
253 L5375: © .1l.111, C — A[W]
254 L5376: 111111 — L5153 BONDR6 : ISB ADD
255 L5377: © .1L11111 — L5067 GO TORI13
ROM 6
0 L6000: .. |- — L0001 ***** ERR71 : SELECT ROM 0
1 L600L: .1..l.. DAS 1> S84
2 L6002: 11l.11.11 — L6354 GO TO DA12
3 L6003: l1.11.11.. DMé6 : IFP#9
4 L6004: L.11.11 - L6214 THEN GO TO DM7
5 L600s: ..11.. . RETURN
6 L6006: 111111, DM3 : A EXCHANGE B{W]
7 L6007: LLL1L., DMI : IFP# 2
8 L60t0: L1011 — L6211 THEN GO TO DM4
9 L6O11: 1ILll.dt, A+1 — AM]

3.863,060

65 66-
ROM 6— Continued:

10 L6012: .L11.11. C—1— C[Ml

11 L6013: .1L1.1.1. . IF C{X]=0

12 L6014: ..111111 —> L6017 THEN GO TO DM2
13 L6015: 11111.11 i A+1 — A[M]

14 L6016: .1.11.11. C—-1—CiMj

15 L6017: * ..1l... DM2 RETURN

16 L6020: .11.11... YCI1 LOAD CONSTANT 3

17 L6021: B I B b LOAD CONSTANT 6

18 16022: .1.I1l.. - LOAD CONSTANT 5

19 L6023: .i.1.1. IFS4 # 1

20 L6024: ..L1.11111 — L6027 THEN GO TO YC2
21 L6025: 11111.1.1 A+ 1 — A[X]

22 L6026: ..11... RETURN

23 L6027: .l.1l.. YC2. LOAD CONSTANT 2

24 L6030 .lLLll.. LOAD CONSTANT 5

25 L6031: RETURN

26 L6032: NO OPERATION

27 1.6033: NO OPERATION

28 L6034: ... it.. — L6006 DD6 JSB DM3
29 L6035: 11.1.111 A EXCHANGE B[W]

30 L6036: (R ET A+C — C[M]

31 L6037: .11l DD8: P—1 —-P

32 L6040: ...1.11.. : FP # 0

33 L6041: ..111.11 —> 16034 THEN GO TO DDé6
34 L6042: .11 0 — C{X]

35 L6043: .I1..111. . C = A[W]

36 L6044: .111.1.1.. IFS7 # 1

37 L6045: 1.1.1.11 . — L6222 THEN GO TO DA4
38 L6046 .11.1.1.. DN1 STACK — A .

39 L6047: 1111111, A EXCHANGE C[W]

40 L6050: 1.111..11 — L6234 GO TO DN3

41 L6051: .11L1.1.. IFS7 # 1

42 L6052: ..1.11.111 — L6055 THEN GO TO DAI
43 L6053: .l1.1.1. IFS4 # 1

44 L6054: .11..11 — L6060 THEN GO TO DA3
45 L6055: .1111..1 DAI 0 — 87

46 L6056: .1.1.1.. C — STACK

47 L6057: .1.l1.1... C — STACK

48 L6060: .11.1.1.. DA3 STACK, — A

49 L6061: - .111.1.1. IFS7 #1

32 L

50 L6062: 11111 — L6065 THEN GO TO DAI3
51 L6063: .1.11.. . C —» STACK

52 L6064: 111110 " DAI3 A EXCHANGE C(W}

53 L6065: TIL1.1111 -> 16353 GO TO DAS

54 L6066: 11111 DMS5 IFP #

55 L6067 ... 111 — L6003 : THEN GO TO DM6
56 L6070: qt... RETURN

57 L60TI: e NO-OPERATION

58 L6072: L1111, DA7 - A —C — C[MS]

59 L6073: 1111111 — L6075 IF NO CARRY GO TO DAl
60 L6074: .1L.1L1L, 0—C — C[MS]

61 L6075: l..1.111. DAl B EXCHANGE C[W]

62 L6076: .11.1.1.., STACK -~ A

63 L6077: 1l.L.1. DOWN ROTATE

64 £6100: 1111111, ; 0-C—1 — C[S]

65 L6101: .1L.1.1.1 — L6151 JSB ADD63

66 L6102: LI1L11H1 0 — A[S]

67 L6103: .1l1.111. 0 — C[W]

68 L6104: .1.1.11. 5—>P

69 L6105: ..L.I1.. LOAD CONSTANT 1

70 L6106: LA LOAD CONSTANT 8

71 L6l07: 111.1. 111 A EXCHANGE C{W]

72 L6110: 1..1.11. IF A >= B[MS]

73 L6111: H.1.111 — L6145] THEN.GO TO DAIO
74 L6112: DA9 C — STACK

75 L6113: B — C{W)

76 L6114; — L6150 ADD62 JSB'ADD61

77 L6115: 0 — S5

78 L6116: 0 — S7

79 L6117 —> LO120 . *¥*x* SELECT ROM 0

80 L6120: DD4 P+1 —>P

81 L6121: C—1— C[X]

82 L6122: — L6205 IF NO CARRY GO TO DD3
83 L6123: A EXCHANGE C{W]

84 L6124: IF B]M] =0

85 L6125: > L6000 THEN GO TO ERR71
86 L6126: ... 1.1 — L6006 JSB DM3

87 Lei27: 1.0l A+C — C[M]

3R L6130: 11.1,118 A EXCHANGE B[W]

89 Leidl: 1.0 JFS4 # 1

90 L6132: L1l — L6134 : THEN GO TO DDS
91 L6133 LElLEEL — L6037 GO TO DD8

92 Leidd: L.l DD5 IF A >= B[M]

93 L6135: KL — L6037 THEN GO TO DD8
94 L6136: e 11 — L6000 GO TO ERR7!

95 L6137: LIILI111 DYI 0 — A[W]

96 L6140; L.11.L1 B EXCHANGE C[WP] -

97 Leial: 1., — L6020 JSB YC1

98 L6142: ' l..1l s §— P

99 L6143: 1..11.1 B EXCHANGE C[WP]

100 L6144; 1.1 — L6160 .GOTOM

101 L6145: 1.1l DAIO B— C[W]

102 L6146: .11.1...1 — L6150 JSB ADD61

3,863,060
67 ‘ 68
ROM 6 —Continued

103 L6147: .L.1.L11 — L6112 GO TO DAY
104 L6150: L.111.111. ADD6! : 0~ A[W]

105 L6151: .Ll1..1. ADD63 : 1 — S5

106 L6152: 1 —> 87

107 L6153: e dll, 12> P

108 L6154: N — L1155 **%%x SELECT ROM |

109 L6155: Ll MU : A+B > A[W]

110 L6156: .1.11..1. MU2 . C—1 —C[P)

111 L6157: .1L.1L.111 — L6155 IF NO CARRY GO TO MUI

112 L6160: 1.1..111. MU3 : SHIFT RIGHT B[W]

113 L6161 ... 1. P—1 =P

114 L6162: .111.11.. IFP #3

115 L6163 .11.111.11 — L6156 THEN GO TO MU
Hé L6164: 1101111, A—-1— A[W]

117 L6165: 11111111 — L6167 IF NO CARRY GO TO DY2

118 L6166: 1111L111L, A+1 — A[W]

19 L6167: 1111111, DY2 DAY > AX)

120 L6170: ..1111.. DD : P+l =P

121 L6171: 1.1.111. SHIFTRGHTC[W]

122 L6172: 1.11.41.. IFP

123 L6173: .1111..11 — L6170 THEN GO TO DDI
124 L6174: .1Ll1l.. LOAD CONSTANT 3

125 L6175: .l..il. 4 —> P

126 L6176: L.1l.1. i B EXCHANGE C{WP]

127 L6177: lL.1.111. DD2 : SHIFT RIGHT C{W]

128 L6200: .. 1. P—1—>P

129 6201; 1., IFP # 14

130 L6202: 111111111 ~ L6177 THEN GO TO DD2
131 L6203: .ILL1.1. ! IFC{X}|=0

132 L6204: ... 1 — L6000 THEN GO TO ERR71
133 L6205: DD3 : IFP #12

134 L6206: — L6120 THEN GO TO DD4
135 L6207: — L6000 GO TO ERR71

136 L6210: NO OPERATION

137 L6211: .1.1.11.. DM4 . IFP #4

138 L6212: .1L1L11 — L6066 THEN GO TO DM5
139 L6213: ..1l1.. : RETURN

140 L6214: L1111l PM7 : IFP# 11

141 L6215 L.111111 — L6217 THEN GO TO DM8
142 L6216: ..ll.. RETURN

143 L6217: 1l.11.11. DM8 © A—1 = A[M]

144 L£6220: .1111.11 C+1 — C[M]

145 L6221: .11 RETURN

146 L6222: .L.1l.1. DA4 : C—1— C[P]

147 L6223: 1l.l.1.. DOWN ROTATE

148 L6224: 1.LI.1. IFSY # 1

149 L6225: 111.1.111 — L6351 . THEN GO TO DA6
150 L6226: .1..1.1.. IFs4 #1

151 L6227 ... 111 — L6001 THEN GO TO DAS
152 L6230: 1.11.1. 0 — S9

153 L6231: 111.11.11 — L6354 GO TO DA12

154 L6232: ... 11.. DN2 : 0> P

155 L6233: 1..1...11. SHIFT RIGHT C[M]

156 L6234: 111., DN3 ;. C+1 = C[P]

157 L6235: | 1.1 11 — L6232 IF NO CARRY GO TO DN2

158 L6236: ..11.1.1. IF C{X| >=1

159 L6237: .1l — L6000 THEN GO TO ERR71
160 L6240: .1L.11111. IFCIS] =0

161 L6241: L1..1111 — L6243 THEN GO TO DN4
162 L6242: L1 0—C — C[M]

163 L6243: DN4 : A4+C— A[MS]

164 L6244: 7= P

165 L6245: 0 — C{W]

166 . L6246: LOAD CONSTANT 7

167 L6247: LOAD CONSTANT 3

168 L6250: LOAD CONSTANT 0

169 L6251: LOAD CONSTANT §

170 L6252 IF A >=C[M]

17 L6253: — L6000 THEN GO TO ERR71
172 L6254: §— P

173 16255: - L6020 ISB YC1

174 L6256: 0 — B(W]

175 L6257: l.1.11l. B EXCHANGE C[W]

176 L6260: l.11.11. IF A[M] >= 1

177 L6261: L.11.1111 — L6263 THEN GO TO DN |
178 L6262: ... 11 — L6000 GO TO ERR71

179 L6263: 1111111) DN11 i A+l =AM

180 L6264: I.1..111. DN15 : SHIFT RIGHT B{W]

181 L6265: .. 1. P-1 —P

182 L6266: L.111..11 — L6270 GO TO DNé6

183 L6267: .1Mki.I.. : DNS . C+1 — C[P)

184 L6270: l..111. DN6 . A—B—> A[W]

185 L6271: LILI1111 - L6267 IF NO CARRY GO TO DN5
186 16272 11111 A +B— A[W]

187 L6273: .11l IFP#0

188 L£6274: L.11.1.11 — L6264 . THEN GO TO DN15
189 L6275 lL.11.11. : K . IF A[M] >=1

190 L6276: 1l...111 — L6301 THEN GO TO DN12
191 L6277: 111111, : A+B — A[W]

192 L6300: .1.11.1.1, C—1 - C[X]

193 MIANE DNI2 c IFCIX] >=1

194 11..1..11 — L6304 THEN GO TO DN7
195 IEREN I A=1 — A[W]

196 I OO & PN DN7 4 - P

- 3,863,060
69 70
ROM 6 — Continued

197 . L6305: - .1l.11... LOAD CONSTANT 3

198 L6306: 0—>P

199 L6307: L1 11, B EXCHANGE C|W]

200 L6310: ..11.111. 00— C[W]

201 Lé6311: 1L11.1.0. A EXCHANGE C}X]

202 L6312: ..111L. DN8§ : P+l =P

203 L6313: 111,11, A+1— A[X]

204 L6314: .11..11. 0 — C[M}

205 L6315 ... Lt - L6007 JSB DM1 |

206 L6136: 11.....11.) A =B — A(M]

207 L6317: 11101 — L6321 IF NO CARRY GO TO DN13

208 -1.6320: 1.1.1111 - 1.6323 GO TO DN14

209 L6321 .10 DNI3 : IF A[M] >=1

210 L6322: 1. L1 — L6312 THEN GO TO DN§ -

211 L6323: HIL L DN14 i A+B — A[M] :

212 L6324: 111,01, A+ C — A[M]

213 L6325 1.1l SHIFT LEFT A[M]

214 L6326: T, A+1 — A[M]

215 L6327: 1..1.1.1. A EXCHANGE B[X]

216 L6330: WL 0 C[W]

217 L6331: .1.1111.1. C—1 — CIXS]

218 L6332: [ARRINRR N A+C— A[W]

219 L6333: IS RERN A EXCHANGE B[W]

220 L6334: [S B O 13— P

221 L6335: .. 1Ll DN9 P—1 —>P

222 L6336: .i..I11. SHIFT LEFT A{W]

223 L6337: RERRIEE N IFP # 7

224 L6340: L1111 ~>» L6335 THEN GO TO DN9

225 L6341: RN RN A+B — A[W]

226 L6342: ..1111. DN10 : P+1—>P

227 L6343: .1..111. SHIFT LEFT A[W]

228 L6344: 1.1.11.. IFP # 12

229 L6345: 11111 — L6342 THEN GO TO DN 10

230 L6346: LT A+1T = A[X

231 L6347: TLLLLEEL A EXCHANGE C{W]

232 L6350: .1.11.11 —> L6114 GO TO ADD62

233 L6351: Jdu 0 : DA6 : IF S84

234 L6352: G — L6072 THEN GO TO DA7

235 L6353: .1.1.1. DAS 00—

236 L6354: L1111, DA12 : C—1— CiX]

237 L6355: 1111 ~» L6360 - IF NO CARRY GO TO DA2

238 L6356: L.L.iL SHIFT RIGHT C[M]

239 L6357: - L1l.1.1: ’ 0 —= C(}

240 L6360: - ..11.1.1. DA2 : IFCIX]>=1

241 L6361: — L6000 THEN GO TO ERR7t}

242 L6362: . 0 — B[W]

243 L6363: C — A[W]

244 L6364; 8§ —>p

245 L6365: 0 — C[WP]

246 L6366: LOAD CONSTANT 2

247 L6367: LOAD CONSTANT 1|

248 L6370: 8§—> P

249 L6371 LI IF A >=C{WP|

250 L6372: ... I - L6000 THEN GO TO ERR7!

251 L6373: S 1 0 IO LOAD CONSTANT |

252 L6374: ISR LOAD CONSTANT 9

253 L6375: | IO B §—>P

254 L6376: .1.1.1.1, A ~C — C[WP]

255 L6377: L1Ltenn — L6137 IF NO CARRY GO TO DY
FUNCTIONS : 2.6 n=log (FV X i/fPMT + I)/log (1 + i)

All of the functions performed by the calculator are 2.7PMT =PV (1 +)1 +i)* — 1]

: : i thi 28 PMT =FV i/[(1 +i)*— 1]
given in the table below. The notes referred to in this 50
table are given at the end of the table. 3. ADD ON TO ANNUAL RATE

3.1 Solve For i In (see Note 1):
TABLE OF FUNCTIONS INCORPORATED INTO
THE BUSINESS CALCULATOR

1. SIMPLE COMPOUNDING 55 B P B .
ILIFV =PV (1 +i)" 1— 12 100, (1+7)»—1
1.2 PV =FV/(1 + i) n d(1+a)n
1.3 = (FV/PV)in — |
1.4 n = (Log(FV))/Log (PV(1 +i)) n = No. of Months

2. ANNUITY 60 R = Annual Add-On Rate
2. FV=PMT (1 +)" — 1/i) 4, ACCRUED INTEREST
22PV=PMT (1 +)"—1/i (1 +)" n = No. of Days
2.3 Solve For i In (see Note 1): i = Annual Interest Rate (%)

PV -PMT (1 +)"—1}i(1+DH"=0 PV = Principal Amount
2.4 Solve For i In (see Note 1): 65 4.1 izgee = n PV /36000
FV—-—PMT [(1 +i)*—1]/i=0 4.2 iggs = iz X 0.98630137

2.5 n=log (PMT/(PV — PMT))/log (1 + i) ~ 5. DISCOUNTED NOTE

3,863,060

71
n = No. of Days
i = Annual Interest Rate (%)
FV = Face Value of Note
5.1 dago = FV X n X i/36000
5.2 yieldage = dage X 36000/n (FV — dsg)
5.3 dyes = dago X 360/365 .
54 yieldaef, = d385 X 36500/" (FV ha d355)
6. BOND
6.1 Price of a Bond (PV) (see Note 2):
n = No. of Days (uncompensated for leap days)
i=yield
¢ = coupon rate
Forn > 182.5:

1000

11
- 1825
Py _100(1+200 + (1+200)
n
i3

t 5_¢f
(]+200 2

where j = 1 — frac n/182.5
For n <182.5:

_(1—=n)e
2

200+¢
+iso 100
6.2 Yield of a Bond (see Note 2):

PV =

Solve for i knowing PV, in the above 2 equations,

which one depending on n.
Solution gives
Iarluul l('lll(‘l <2X l actual X C X 10~ -6
7. DATE (see Note 3):
7.1 Date 1 — Date 2
7.2 Date * n Days
1900 <Date=2099 A.D.
8. ACCUMULATED INTEREST

accumulated interest (in $)

; k—n
=PMT k—j(l;l_éﬁ)— [1"(14‘%))3—1{]

100

8.2 PV, =PMT X 100/i {1 — (1 + i/100)*~"}
9. ACCUMULATION & MEANS & o

.1

n
Sum = _;_ T
1
11
Sum of Squares= > ;2
1

1 1n
Mean =— T

1 n 172
Py > x2— Mean?
T
10. TREND LINE
10.1

1
2 Z/"!/k

n{n

11
b DD m
1

Slope= 1Y/6

(m}

10.2 & n-f-
Y Int,(zrcupl;='"~ Z!/k— 7y
(c) |

- slope

15

20

25

30

35

45

50

55

60

65

72

10.3 ygy = mk + ¢
11. SUM OF DIGITS DEPRECIATION
n = Depreciable Lifetime
PV = Initial Value of Asset
}1.1 Depreciation at time (k) = [2 PV/n (n + 1)]
(n—k+1)
11.2 Remaining book value at (k) = PV [(n — &)
(n—k+Dl/n(n+1)
12. CASH FLOW
12.1 Current Sum of Present Value of Cash Flow

11
=S V(i)
j=0

where
j=j' ™ cash flow
and i = cost of capital

Note 1: FIG. 32 illustrates the algorithm used for the
solution of 2.3, 2.4 and 3.1 above. The technique is a
simple Newton-Raphson method for the solution of an
implicit equation.

Note 2: FIG. 33 shows how the price of a bond is cai-
culated, and FIG. 34 illustrates the algorithm used to
compute the yield to maturity of a bond.

Note 3: FIG. 35 illustrates the date algorithm. The
first half computes the dates difference and the next
half the date * n days.

OPERATING INSTRUCTIONS

All of the operations described below are controiled
or initiated from the keyboard input unit 12 which is
shown in FIG. 1,

BASIC INSTRUCTIONS

Clearing
To clear display only oress CLX SLEAR
To clear everything 7 CLX .
(except constant storage) press m
Constant Storage
To store a constant aress 310
RCL.

To recall a constant oress

NOTE: Certain important pre-programmed calcula-
tions overwrite previous contents of the constant stor-
age. These are:
Add-on to annual Percentage Rate Conversion
Effective yield of an annuity (Loan repayment and
sinking fund)
Accrued interest and discounted note problems
Trend lines (least squares. linear regression)
Sum-of-the-digits calculations
Bond calculations (price and yield)
Accumulated interest paid on a loan
Discounted Cash Flow Analysis
Except where noted above, a constant remains in the
machine until it is turned off or over-written by another
constant.
Rounding ,
To round-off (the display only) press W

3,863,060

73 74
then any desired numeral key between [8] and g

@ . A numeral key greater than [E will put To obtain difference between two dates: SAVE 1 |

display in socalled “scientific notation.” :tg in géiéfi'ﬁate b —

Normal turn-on mode is automatically rounded ,

to two decimal places. 5 To obtain a date from a base date:
NOTE: Rounding affects the display only. The full in- —key in the base date press SAVE 1
ternal accuracy of the machine is maintained. DATE

. . . —key in the number of days press -
Arithmetic Operations . . * (can be positive or negative) Db [pax
To perform simple arithmetic operations between

two numbers: 10 To obtain the day of the week of a date:

SAVE
—key in today’s date press hw

—key in the desired date press SAVE 1 ‘
—key in the first number ‘ press —key in press B

. 15 . ,

it p B e N N B e dein ot porton of e i e]
To perform chain calculations, only the first number keyin e press @
has to be loaded through a[sAVE t]operation. . all sub-
sequent numbers need only be keyed in and the desired 20
function key pressed after each one.

Automatic computation between a displayed number
and a stored constant is achieved by pressing @
and the desired function.

If the date in question is beyond today, its day of the
week will be today’s day plus the number shown in
the display.

If the date in question is before today, its day of the

25 week will be today’s day minus the number shown

in the display.
Error Indication
An improper or illegal operation (such as dividing by
zero) will result in a steady blinking display..
30 Battery Condition (low charge indication)
All decimals in the display indicates low battery con-

Changing Sign dition. Plug into recharger.
To change the sign of a dis- — T
played mumber press | CIIS COMPOUND INTEREST
'[‘ enter o S aye " o h er, . .
k:yti?, umber e number press 35 NOTE: To use the compound interest keys (top row)
simply remember to enter your known values in left-to-

Raising a Number to a Power . .
Key in positive base number press I—_SAVE T right sequence and then press the key which corre-
(to be raised to a power) sponds to your answer.
Key in power (exponent) press E -

To Obtain Square Root of a Number 40

Future Value

\/ .
Key in Number press 7////////% Key in number of time periods press

I

Percentage Operations Key in interest rate per time period (in %) press I i
To obtain the percent amount of a number: 45 Key in present value (principal PV
principal) press
i SAVE 1t
—key in the base number press To obtain future value ress [TV
—key in the percent (as a %) press ,70_] : press _J
50 NOTE: Simple arithmetic operations may be per-
To add or subtract the percentage amount to the formed prior to entering any value. Also, a mistaken
base number simply press or [, re- last'ent'ry may be corrected by pressing [CLX], then
spectively : keying in the correct value and pressing the appropri-
o . ate key.
To obtain the percent difference between the Y
two numbers: 55 Present Value | n
. . Key in number of time periads press

v Key in interest rate per time period (in %) press i
—Kkey in the base press SAVE 4 y p p P

{or reference) number A Key in future value amount press KV

—key in th d by
(a:z“::rtised?:;g;edn?: p:rrcent) press 7///// 60 "To qbtain present value press _P_J

Rate of Return (growth rate)

Key in number of periods press pno
Calendar Functions . 65 Key in present (beginning) value * press PV,
Data entry sequence is: month, decimal point, two nu-

meral day and four numeral year. Example: May. 8, Key in future (ending) vaiue press [Fv

1972 = 5.081972 Calendar range is from Jan. 1, 1900 . o o o
to December 31, 2099. To obtain effective rate per period (in %) press L

75

Number of Time Periods (for a compounded amount)

Key in interest rate per period (in %) press
Key in present (beginning) value press
Key in future (ending) value . press
To obtain number of time periods press

Nominal Rate Converted to Effective Annual Rate

Key in number of time periods per year

3,863,060

76

Key in Nominal Rate (as a %) press E E
Key in m @ IE press

To obtain effective annual rate (in %)

Effective Annual Rate Converted to Nominal Rate

Key in number of time periods per year

teyn [1] 3] 1]
Key in effective annual rate (in %) press

To obtain nominal rate (in %)

SINKING FUND

Future Value of an Annuity (sinking fund)

Key in number of time periods press
Key in interest rate per period (as a %) press
Key in payment (installment) amount press
To obtain future value press

Sinking Fund .Payment Amount

Kcey in number of time periods press
Key in interest rate per period (as a %) press
Key in future value press
To obtain payment amount . press

Effective Yield of Sinking Fund

Key in number of time periods press
Key in payment (installment) amount press
Key in future value press
To obtain interest rate per period (as a %) press

Number of Periods Required for a Sinking Fund

Key in interest rate per period (as a %) press

Key in payment (installment) amount press

-Continued
E Key in future value press Vi
To obtain number of time periods press o '
Fv| S
LOAN PAYMENT
l_| Accrued (Simple) Interest Payment Due
press [207]]
press STO
press SAVE 1
L]
press
Key in number of days press '
Key in annual interest rate (in %) press i
Key in the principal (present value) press P i"‘
3 NTR
[Il To obtain interest payment due on a - il
360 day basis press m PMT
To obtain interest payment due on a press Xy
T 365 day basis
PMT] 49
@ Discounted Note and Effective Annual Yields
Key in number of days oress !
45
’I’ Key in annual interest (discount)
rate (in %) press
I_—i—_’ Key in the face (future) value —
of note press ;
50 .
To obtain the discount amount
PMT l (i.e.—the interest portion) NTR
of the note on a 360 day basis press m PMT
To obtain the effective annual Pranl
55 yield on a 360 day basis press R.
n To obtain the discount amount of
the note on a —_
365 day basis press R
PMT R
TV 60 To obtain the effective annual -
yield on a 365 day basis press Ri
E True Equivalent Annual Yield
Key in number of days press SAVE 1|
— 65 - I N
l i:[Key in (3J ﬁ] L“: | press - a
R Key in the principal (present v
[l M_I ' value) of note press :

3,863,060 .
_77 ‘ :

Key in the face value (futuré
value)-of note X

T8
: -Continued
press . .

To obtain true equivalent - i i [
annual yield press ’E) I;:r); on‘;)the interest rate per péyment (or press]— i
5 Key in the payment amount per period press PMT‘
Present Value of an Annuity (Principal Amount of a Loan) —
To obtain the accumulated interest press {':‘., +

Key in the number of time periods

(months, years, etc.) press n _Remaining Balance (Principal) of a Loan
As an extension of the previous problem press l X YJ

Key in interest rate per period 10 To obtain the remaining balance

(in %) press m (principal)

**Add-on™ Interest Converted to a True Annual Percentage Rate
Key in the amount of the payment .

per period press PMT Key in the number of months of the loan press !__‘Ti
To obtain present value 15 Key in the “add-on" rate (per annum) press i ‘
(principal)) . press .]

To obtain true annual percentage rate press i ‘

Loan Repayment Amount ‘ B
To obtain the monthly payment amount press. lTy

Key in number of time periods press n
. 20 5

L X) Then key in the principal amount press ;_ﬂ
Key in interest rate ;per period - to be loaned
(in %) press l i i .

Interest Rebate (Rule of 78's))
Key in present value (principal) press PV Keyin Iust»payment number press n
To obtain payment amount per 25 .) .) n
period press PMT]| - IKey in total number of payments for the press
; . ! oan . .
‘Key in'the total finance charge press l rv
True Interest Rate of a Loan To obtain the unearned interest

Key in number of time periods press li‘ 30 (rebate) press @ [x__y]

Key in payment amount per period press PMT To obtain the remaining principal due, . .
) key in the amount of each payment press | SAVE 1

Key in present value (principat) press key in the number of payments. .
' (-]
L]

_ remaining - press

To abtain ‘interest rate per press 35 -
period (in %) : DEPRECIATION AMORTIZATION
NOTE: To obtain an annual rate simply key in the num- e -
. . Sum-of-the-years’ Digits Depreciation
ber of time periods per year and press[x]. 1. Key in given year number (or press | n
40 beginning year number) -]
2. Key in life of asset (number of : press | n
years)
Number of Time Periods Required for a Loan 3. Key in depreciable amount © press [PV
Key in the interest rate per time (purchase less salvage value)

period press

45 4. To obtain given year’s depreciation press % 50D

Key in the payment amount per time P 5. To obtain subsequent year's press [SOD
period depreciation

=1 =
RN
=

. . 6. Continue step 5 as desired
Key in the present value (principal) press 7. To obtain the depreciation for a
. . particular year not in sequence, i SO0 |
To obtain the number of time periods press simply key in the year number press E r_sﬂ
. 50 desired and

. L 8. Continue step 7 as desired.
Accumulated Interest Paid on a Loan (between two points in time)

Key in the payment number press [SE

corresponding ta the first point of the NOTE: To obtain the remaining book value after each
time span in question

Key in-the payment number press E 55 year's depreciation press | XY |.The | Xy |key must be
corresponding to the last point of the) : e .

time span in question pressed again before the next ‘_ son| calculation (step
Key in the total number of payments of press . 5).

the loan

Straight Line Depreciation .
Key in depreciable amount (purchase less salvage value) press SAVE 1| |SAVE 1t |
To obtain each year’s depreciation

—key in life of asset (number of years) press = l

NOTE: To obtain the remaining book value after each

79

3,863,060

year’s depreciation, first press [SE B (for book

value after first year) then Rrcr

quent year.

I —ﬁ for each subse-

80

Extended Precision Bond Calculations

NOTE: This procedure replaces steps | and 2 in normal
bond calculations. It provides six decimal place accu-
racy for all bond price calculations and three decimat

Variable Rate, Declining-Balance Depreciation

I. Keyin [1] [0] and press i SAVE ¢
2. Key in life of asset (number of years) press =
S
Key in declining factor or rate (i.e.—1.5, 2 etc.) press , X STO

4. Key in depreciable amount (purchase less salvage value) N

5. To obtain year's depreciation press RCL| . %

6. To obtain remaining book value press .

7. Continue steps 5. and 6. for subsequent years. —J
Diminishing Balance Depreciation -

1. Key in life of asset (number of years) press n

2. Key in beginning value of asset press PV |

3. Key in ending (salvage) value of asset press Fy

NOTE: Salvage value must be greater than zero.

25

place accuracy for most yield calculations.

4. To obtain and store rate of depreciation press !iﬂ ‘—CET:;# 3 T‘j) :
5. Key in beginning value of asset
6. To obtain year's depreciation press [RCL ' oo
7. To obtain remaining book value press (A—:l
8. Continuesteps 6. and 7. for subsequent years. -
BONDS

Price of a Bond

ov}
Io
< Z
C

L
<

1. Key in either maturity or purchase press SAVE
date lj

2. Key in remaining date press

3. Key in yield-to-maturity (as a %) _ press | i

4. Key in coupon rate (as a %) press PMT

5. To obtain bond price press m

Yield-to-Maturity of a Bond

Key in either maturity or purchase press SAVE 1
date*

2. Key in remaining date . press DAY

3. Key in coupon rate (as a %) press PMT

4. Key in the bond price press

5. To obtain bond yield press %

EE
-l
2

NOTE: Normal accuracy of bond calculations is two
decimal places for most cases. If further accuracy is re-
quired, the following procedure should replace steps 1
and 2 of either of the above.

40

=N
W

55

(=
<o

65

a) Determine the number of days,
months and years to maturity (in
accordance with trade custom)
b) Key in number of days press gV -
c) Keyin [0] (days/month) ress -
d) Key in number of months ress -
e) Keyin (1] (months/year) ress _
f) Key in number of years oress T
g) Keyin 6] (days/year}) press N 1
Continue with step 3. of bond calculations.
INVESTMENT ANALYSIS
Discounted Rate of Return (for even cash flows) —
Key in number of time periods aress Qs
Key in amount of cash flow per period press PMT!
Key in original investment oress PV .
To obtain discounted rate of return (in press

%) per period
Discounted Cash Flow- Analysis (for uncven cash flows)

1. Key in discount rate (in %) per pertod press

2. Key in original investment

3. Keyin cash flow per period
Continue step 3. for subsequent
flows.

press PV =+

oress ClS. Dy

3,863,060

81

NOTE: Investment is profitable (to the extent of the
discount rate) if the result is positive. Furthermore, the
user can determine the “break-even” period by noting
the period in which step 3 first yielded a positive result.

STATISTICS

Mean and Standard Deviation

CLEAR

press IE,

3. Continue step 2. until all data are entered.
4. To obtain mean (arithmetic average) press | X

NOTE: To obtain the standard deviation after each

1. Clear the entire machine by pressing

2. Key in data item

mean calculation press @j . The [Xy key must -

be pressed again before resuming.

. s
5. To return to the summation-mode press % E

6. Continue with step 2. if desired.

NOTE: To correct a data item key in its value and press

M 550

Trend Lines (Least Squares Linear Regression)

CLEAR

1. Clear the entire machine by pressing

2. Sequentially, key in data item press

NOTE: Each time @ is pressed, the sequence number
for that item is displayed.

3. Continue step 2. until all data are
entered.

To terminate the data entry sequence
To obtain a specific value on the
trend line, key in the appropriate time
period number

6. Repeat step 5. as often as desired.

press % @
press

o

NOTE: The user may also “step-along” the trend line
by simply pressing as many times as desired. Fur-
ther, the current time period number may be obtained

by pressing . The key must be pressed again
before resuming.

7. To obtain the amount of change of
the trend line per period (commonly
called “*slope™)

8. To resume operation

We claim:

1. An clectronic calculator comprising:

keyboard input means having a plurality of numeric
keys manually operable for entering numerical
data into the calculator and having a plurality of
non-numeric control keys manually operable for
controlling the calculator, said non-numeric con-

20

25

30

35

40

45

50

55

60

65

82

trol keys including a plurality of function keys asso-
ciated with a plurality of mathematically related
variables and manually operable for designating se-
lected numerical data as said variables and for con-
ditioning the calculator to perform mathematical
operations involving said variables;

storage means coupled to said keyboard input means

for storing numerical data entered into or calcu-
lated by the calculator;
processing means coupled to said keyboard input
means and to said storage means and responsive to
successive actuation of one or more of said nu-
meric keys and one or more of said non-numeric
control keys in a sequence, including one of said
function keys followed by one of said function keys
without interruption by any of said numeric keys,
for automatically performing a mathematical oper-
ation employing selected numerical data, stored in
said storage means and designated as one or more
of said variables by actuation of one or more of said
function keys, to determine the value of a variable
associated with the last of said function keys in said
sequence; and o

output means coupled to said processing means for
indicating the value of the variable associated with
the last of said function keys in said sequence.

2. An electronic calculator as in claim 1 wherein saic
processing means is responsive to actuation of one o}
said non-numeric control keys for determining the per-
centage difference between two numerical values
stored in said storage means and for thereupon causing
said output means to display that percentage difference
in decimal digit form.

3. An electronic calculator as in claim 1 wherein:

said processing means is operable for generating the

percentage difference between two numerical val-
ues stored in said storage means; and

said non-numeric control keys include a command

key manually operable with another of said non-
numeric control keys, when said command key and
said other non-numeric contro! key are succes-
sively actuated in the order mentioned, for causing
said processing means to generate the percentage
difference between two numerical values stored in
said storage means and for thereupon causing said
output means to display that percentage difference
in decimal digit form.

4. An electronic calculator as in claim 1 wherein said
processing means includes:

first means responsive to actuation of a first one of

said non-numeric control keys for generating the
arithmetic average of numerical data stored in said
storage means, for causing said output means to
display said arithmetic average in decimal digit
form, and for generating an end-of-operation sig-
nal; and

second means coupled to said first means and respon-

sive to said end-of-operation signal for generating
the standard deviation of numerical data stored in
said storage means, said processing means being
responsive to actuation of a second one of said
non-numeric keys for causing said output means to
indicate said standard deviation in decimal digit
form.

5. An electronic calculator as in claim 4 wherein said
non-numeric control keys include a command key

3,863,060

83

manually operable with said first and second non-
numeric control keys, when said second non-numeric
control key, said command key, and said. first non-
numeric control key are successively actuated in the
order mentioned following generation of said arithme-
tic average and said end-of-operation signal, for caus-
ing said first and second means to generate the arithme-
tic average and the standard deviation for different nu-
merical data entered into said storage means by said
numeric keys.
6. An electronic calculator as in claim 1 wherein:
said numeric and non-numeric control keys are man-
ually operable for storing numerical data repre-
senting any two calendar dates in said storage
means in a predetermined decimal digit format;
and a
said processing means includes first means respon-
sive to actuation of one of said non-numeric con-
trol keys for determining the number of days be-
tween any two calendar dates; included within a
predetermined range of calendar dates and repre-
sented by numerical data stored in said storage
means in said predetermined decimal digit format,
and for causing said output means to display the
determined number of days in said predetermined
decimal digit format.

7. An electronic calculator as in claim 6 wherein said
processing means includes:

second means responsive to actuation of said one of
said non-numeric control keys for causing said out-
put means to indicate when numerical data stored
in said storage means represents an erroneous cal-
endar date, represents a calendar date outside said
predetermined range of calendar dates, or is in-
compatible with said predetermined decimal digit
format; and

third means for compensating for the extra day in
leap-years occurring: within said predetermined
range of calendar dates.

8. An electronic calculator as in claim 1 wherein:

a first one of said non-numeric control keys is manu-
ally operable with one or more of said numeric
keys for storing a first numerical datum represent-
ing the number of successive payments;

a second one of said non-numeric control keys is
manually operable with one or more of said nu-
meric keys for storing a second numerical datum
representing the interest rate per payment;

a third one of said non-numeric control keys is manu-
ally operable with one or more of said numeric
keys for storing a third numerical datum represent-
ing the amount of each payment; and

said processing means is responsive to actuation of a
fourth one of said non-numeric control keys for
generating the present value of the number of suc-
cessive payments represented by said first numeri-
cal datum in the amount per payment represented
by said third numerical datum and at the interest
rate per payment represented by said second nu-
merical datum and for causing said output means
to display the generated present value in decimal
digit form.

9. An elecronic calculator is in claim 8 wherein each
of said first, second, third, and fourth non-numeric con-
trol keys comprises a different one of said function
keys.

20

30

35

40

45

50

55

84

10. An electronic calculator as in claim 1 wherein:

a first one of said non-numeric control keys is manu-
ally operable with one or more of said numeric
keys for storing equally-spaced and chronological-
ly-sequenced numerical data in said storage means;

said processing means is operable for generating the
least-squares linear regression of the numerical
data stored in said storage means; and

said non-numeric control keys include a command
key manually operable with said first non-numeric
control key, when said command key and said first
non-numeric control key are successively actuated
in the order mentioned, for causing said processing
means to generate a first value of the least-squares
linear regression of the numerical data stored in
said storage means and for causing said output
means to indicate said first value in decimal digit
form.

11. An electronic calculator as in claim 10 wherein:

said first value is the value at the y-intercept in rect-
angular coordinate notation; and

said processing means is responsive to further succes-
sive actuations of said first non-numeric. control
key for generating succeeding values of the least-
squares linear regression of the numerical data
stored in said storage means.

12. An electronic calculator as in claim 10 wherein:

a second one of said non-numeric control keys is
manually operable with-one or more of said nu-
meric keys for storing the sequence number of a
chronological numerical datum in said storage
means; and

said processing means is responsive to actuation of
said first non-numeric control key, when succes-
sively preceded by actuation of said second non-
numeric control key, for generting the value of the
least-squares linear regression for the chronologi-
cal numerical datum designated by the sequence
number stored in said storage means by actuation
of said second non-numeric control key.

13. An electronic calculator as in claim 1 wherein:

said numeric and non-numeric control keys are man-
ually operable for storing numerical data repre-
senting an initial calendar date in said storage
means in a predetermined decimal digit format and
for storing numerical data representing a number
of days from said initial calender date; and

said processing means includes first means respon-
sive to actuation of one of said non-numeric con-
trol keys for generating the calender date of the
day corresponding to said number of days from
said initial calendar date, when said initiai and gen-
erated calendar dates are included within a prede-
termined range of calendar dates, and for causing
said output means to display the generated calen-
dar date in said predetermined decimal digit for-
mat.

14. An electronic calculator as in claim 13 wherein

60 said processing means includes:

65

second means responsive to actuation of said one
non-numeric control key for causing said output
means to indicate when numerical data stored in
said storage means represents an erroneous calen-
dar date, represents a calendar date outside said
predetermined range of calendar dates, or is in-
compatible with said predetermined decimal digit
format; and

: . -85 .
third means for compensating for' the -extra day in
leap-years -occurring- within - said predetermined
range of calendar dates. B
15. An electronic calculator as in claim 13 wherein
said non-numeric control keys include a command key
manually operable with said one non-numeric control
key, when said command key and said one non-
numeric control key are. successively actuated in the
order mentioned, for causing said first means to gener-
ate the calendar date of the day corresponding to said
number of days from said initial calendar date and to
cause said output means to display the generated calen-
dar date in said predetermined decimal digit format.
16. An electronic calculator as in claim 13 wherein
said first means is responsive to actuation of said one
non-numeric control key for generating the calendar
date of the day corresponding to said number of days
forward from said initial calendar date, when' the nu-
merical data representing said number of days from
said initial calendar date is positive, and for generating
the calendar date of the day corresponding to said
number of days backward from said initial calendar
date, when the numerical data representing said num-
ber of days from said initial calendar date is negative.

17. An electronic calculator as in claim 1 wherein:

a first one of said non-numeric control keys is manu-
ally operable with one or more of said numeric
keys for storing a first numerical datum designating
a particular period within the depreciable life of an
asset in said storage means and is manually opera-
ble with one or more of said numeric keys for stor-
ing a second numerical datum representing the
total number of such periods in the depreciable life
of the asset in said storage means;

a second one of said non-numeric control keys is
manually operable with one or more of said nu-
meric keys for storing a third numerical datum rep-
resenting an initial value of the asset in said storage
means;

said processing means is operable for generating the
value of the sum-of-the-digits depreciation and the
depreciated value of the initial value of the asset
represented by said third numerical datum for the
period designated by said first numerical datum;
and

said non-numeric control keys include a command
key manually operable with a third one of said non-
numeric control keys, when said command key and
said third non-pumeric control key are successively
actuated in the order mentioned, for causing said
processing means to- generate said value of the
sum-of-the-digits depreciation and said depreci-
ated value and for causing said output means to dis-
play said generated value of the sum-of-the-digits
depreciation in decimal digit form.

18. An electronic calculator as in claim 17 wherein
said processing means is responsive to further succes-
sive actuations of said third non-numeric control key
for generating the value of the sum-of-the-digits depre-
ciation of the initial value of the asset represented by
said third numerical datum for each period included
within the total number of periods represented by said
second numerical datum subsequent to the period des-
ignated by said first numerical datum and for causing
said output means to display each generated value of
the sum-of-the-digits depreciation in decimal digit
form.

3,863,060

5

20

25

30

3

W

40

45

55

60

- 86

19. An electronic calculator as in claim 17 wherein
a fourth one of said non-numeric control keys is manu-
ally operable for thereafter causing said output means
to display said generated depreciated value in decimal
digit form. -

a first one of said non-numeric control keys is manu-
ally operable with one or more of sdid numeric
keys for storing a first numerical datum represent-
ing the number of days within an interest accruing
period in said storage means;

a second one of said non-numeric control keys is
manually operable with one or more of said nu-
meric keys for storing a second numerical datum
representing an annual interest rate in said storage
means;

a third one of said non-numeric control keys is manu-
ally operable with one or more of said numeric
keys for storing a third numerical datum represent-
ing a principal amount in said storage means;

said processing means is responsive to actuation of a

- fourth one of said non-numeric control keys for
generating the values of the amount of interest on
a 360-day basis and on a 365-day basis of the prin-
cipal amount represented by said third numerical
datum for the number of days represented by said
first numerical datum and at the annual interest
rate represented by said second numerical datum
and for causing said output means to display the
value of the amount of interest generated on one of
said bases in decimal digit form.

21. An electronic calculator as in claim 20 wherein
said processing means is responsive to actuation of a
fifth one of said non-numeric control keys for causing
said output means to display the value of the amount
of interest generated on the other of said bases in deci-
mal digit form. ‘

22. An clectronic calculator as in claim 20 wherein
said non-numeric control keys include a command key
manually operable with said fourth non-numeric con-
trol key, when said command key and said fourth non-
numeric. control key are successively actuated in the
order mentioned, for causing said processing means to
generate said values of the amount of interest and to
cause said output means to display the value of the
amount of interest generated on said one of said bases
in decimal digit form.

23. An electronic calculator as in claim 22 wherein
said processing means is responsive to actuation of a
fifth one of said non-numeric control keys for causing
said output means to display the value of the amount
of interest generated on the other of said bases in deci-
mal digit form.

24. An electronic calculator as in claim 1 wherein:

a first one of said non-numeric control keys is manu-
ally operable with one or more of said numeric
keys for storing a first numerical datum represent-
ing the number of payments within an interest ac-
cruing period in said storage means;

a second one of said non-numeric control keys is
manually operable with one or more of said nu-
meric keys for storing a second numerical datum
representing the annual add-on interest rate in said
storage means; and :

said processing means is responsive to reactuation of
said second non-numeric control key, following
storage of said second numerical datum in said
storage means, for generating the value of an annu-

\

3,863,060

87

lar percentage interest rate and the value of a
monthly payment factor for the number of pay-
ments represented by said first numerical datum at
the annual add-on interest rate represented by said
second numerical datum and for causing said out-
put means to display the generated value of the an-
nual percentage interest rate in decimal digit form.

25. An electronic calculator as in claim 24 wherein
each of said first and second non-numeric control keys
comprises a different one of said function keys.

26. An electronic calculator as in claim 24 wherein
said processing means is responsive to actuation of a
third one of said non-numeric control keys for causing
said output means to display the generated value of the
monthly payment factor in decimal digit form.

27. An electronic calculator as in claim 26 wherein
said processing means is further responsive to actuation
of one or more of said numeric keys for storing a third
numerical datum representing the principal amount in
said storage means and is thereupon responsive to actu-
ation of a fourth one of said non-numeric control keys
for generating the value of the monthly payment and
for causing said output means to display the generated
value of the monthly payment in decimal digit form.

28. An electronic calculator as in claim 1 wherein:

said plurality of function keys comprises five finan-

cial function keys associated with five mathemati-
cally related financial function variables; and

said processing means is responsive to successive ac-

tuation of one or more of said numeric keys and
one or more of said non-numeric control keys in a
sequence, including one of said financial function
keys followed by one of said financial function keys
without interruption by any of said numeric keys,
for automatically performing a mathematical oper-
ation employing selected numerical data, stored in
said storage means and designated as one or more
of said variables by actuation of one or more of said
financial function keys, to determine the value of
a financial function variable associated with the
last of said financial function keys in said sequence.

29. An electronic calculator as in claim 28 wherein

said five financial function keys include:

a first financial function key associated with a finan-
cial function variable representing a number of pe-
riods;

a second financial function key associated with a fi-
nancial function variable representing an interest
rate per period;

a third financial function key associated with a finan-

10

20

25

30

35

40

45

50

55

60

65

88

cial function variable representing a periodic pay-
ment amount;

a fourth financial function key associated with: a fi-
nancial function variable representing a present
value of principal; and

a fifth financial function key associated with a finan-
cial function variable representing a future value of
principal after one or more periods have elasped.

30. An electronic calculator as in claim 29 wherein

said first, second, third, fourth, and fifth financial func-
tion keys are positioned on said keyboard input means
in a lineal sequence and in the order mentioned.

31. An electronic calculator as in claim 29 wherein:

said non-numeric control keys include a command
key for associating one of said five financial! func-
tion keys with an alternate financial function vari-
able representing a yield to maturity of a bond, for
associating another of said five financial function
keys with an alternate financial function variable
representing an accrued interest amount. and for
associating still another of said five finanical func-
tion keys with an alternate financial function vari-
able representing a bond price; and

each of said three last-mentioned financial function
keys is manually operable, when actuated succes-
sively following actuation oof said command key,
for designating selected numerical data as the cor-
responding one of said alternate financial function
variables and for conditioning the caiculator to
perform a mathematical operation involving that
alternate financial function variable.

32. An electronic calculator as in claim 31 wherein:

said first, second, third, fourth, and fifth financial
function keys are positioned on said keyboard
input means in a lineal sequence and in the order
mentioned; and

said three financial function keys associable with said
alternate financial function variables are posi-
tioned on said keyboard input means in a lineal se-
quence and in the order mentioned.

33. An electronic calculator as in claim 31 wherein:

each of said five financial function keys is provided
with an indicium indicating the financial function
variable with which it is associated:; and

said keyboard input means is further provided with
indicia indicating the alternate financial function
variables with which said three financial function
keys are associable.

34. An electronic calculator as in claim 33 wherein

said command key and said indicia indicating the aiter-

nate financial function variables are color coded.
% * * % %

Page 1 of 7

UNITED STATES PATENT OFFICE
CERTIFICATE OF CORRECTION

Patent No. 3,863,060 Dated January 28, 1975

Inventor(s) France Rode et al.

It is certified that error appears in the above-identified patent
and that said Letters Patent are hereby corrected as shown below:

Col. 11, line 12, after "pointer" insert -- # --;

Col. 13, line 37, "16" should read -- 20 --;

Col. 15, line 10, "wave forms" should read -- waveforms --
Col. 18, line 66, after "with" insert -- the functions it
initializes. The additional functions --;

Col. 19-22, the "TABLE OF INSTRUCTION TYPES (X = DON'T
CARE)"” should appear as shown below:

TABLYE. OF INSTIRUCTION TYPES (X = DUN'T CARLE)

AVATLABLL

e INSTRUCTIONS NAME FIELDS
) : 8
1 256 (ADDRESSES) JUMP SUBROUTTHE {SumwUT I Abbress [0 1 4
| S
256 (ADDRLESSES) CONDITIONAL BRARCH lr‘im.m:n ADDILSS rl 17} .
i PO PR
9 N o L
‘ S 3
2 32 x B ARLTIRETIC/REGISTER OPERATION -] WORD {1 O
= 256 CODE SELECT,
:) : ‘ 4 2
3 64 STATUS OT'ERATIONS In T FJol1 o o]
(37 uscd) 0, Iy I, 0
SET RIT Y) F = 00
INTERKOGATE N F =01
RESET N F =10
CLEAR ALL F=11 (N = 0000)
. ——— e - G - . o B e TTT——

-
4

Page 2 of
UNITED STATES PATENT OFFICE

CERTIFICATE OF CORRECTION

Patent No._ 3,863,060 Dated __Japuarv 28, 1975

Inventor(s) France Rode et al.

It is certified that error appears in the above-identified patent
and that said Letters Patent are hereby corrected as shown below:

TAM.L. OF INGTRUCTION TYPES (X = DON'T CARLE)

AVATLALLE
VPRI TNSTRUCTIONS HAME FIELDS
o4 2
4 6% POINTER OPLRATIONS [F{1[1 0 o]
(30 vsed) _SET POINTER TO P F = 00
PTWTERROGATE P F= 10
“ DECREMENT P “FeoOl o
" INCKEMENT B Fo1f X
' 42 - :
s - o4 DATA ENTRY/DISPLAY W T Fj1 00 0 |
(20 usecd) .
LOAD CONSTANT 0L

. IS + A
BCD INPUT TO C REG
STACK INSTRUCTLONS

1X (N = XX01)
1Y (N = XX11)
10 R = (---0)

e B B e B I
L IO T I

AVAILABLE 00
e e ‘ o] 2
6 32 ROM SELECT, MISC. [0 | F[lco¢0 0|
(11 used) SELECT ROM “'N" F = 00
KEYDOARD ENTRY F e 10 (% = XX1)
EXTERUAL ENTRY (3t = XX0}
SURROUTINE RETURN F = 01 (8 « XXX)
i 4
7 16 RESELRVED FOR [X X XX] 100000}
PROGRAN STORAGE 3
8 8 HOS CUKCULT [¥Xxx]1o000000}
) 9 7 - AVATLANLE [XxXX 0000 070]
v .
10 1 NO OPERATION (HOP) {000 0000000]

Col. 23, line 69 "+" (each occurrence) should read --

Page 3 of 7
UNITED STATES PATENT OFFICE

CERTIFICATE OF CORRECTION

Patent No. 3,863,060 pated January 28, 1975

Inventor(s) France Rode et al.

It is certified that error appears in the above-identified patent
and that said Letters Patent are hereby corrected as shown below:

Col. 23, line 70, "+" (first occurrence) should read

——— i -

Col. 25, the "TABLE OF STATUS INSTRUCTION DECODING"
should appear as follows:

TABLE OF STATUS INSTRUCTION DECODING,

Bit { I 1 11 I 1 I I 11

o 8 7 61 5 4l 3] 210
FIELD Y F 0 1 0 0.
F INSTRUCTTON
00 SET ¥LAG N
01 INTERROGATE FLAG W
10 RESET FLAG N
11 CLEAR I\LI_. FLAGS (N=0000D)

Col. 26, the "TABLE OF POINTER INSTRUCTION DECODING"
should appear as follows:

TABLE. OF POLINIER INSTRUCTION DECODING

BIT # 9 8 7 6 5 & 3 2 1 0
FIELD r F 1 1 00
¥ INSTRUCTION

00 Set pointer to P
10 Interrogate if pointer at P

0l Decrement pointer
P = XXXX

11 Increment pointer 1.e. don't care

: Page 4 of 7
UNITED STATES PATENT OFFICE

CERTIFICATE OF CORRECTION

Patent No. 3,863,060 Dated January 28, 1975

Inventor(s) France Rode et al.

It is certified that error appears in the above-identified patent
and that said Letters Patent are hereby corrected as shown below:

Col. 26, the "TABLE OF TYPE 5 INSTRUCTION DECODING"
should appear as follows:

TABLE OF TYPE 5 INSTRUCTION DECODIKG

(¥ = don't care, which in this context
means the instruction does not depend
on this bit; either a 1 or a 0 here
will cause the same execution.)

Tg Iy I, 1o Ig I, 1 00 OJ
Iglg 17 Iy s Iy INSTRUCTION
0000 » 1111 0 O 16 Available inctructions
10 | oooo ¥ 1001 o 1 Enters 4 bit code N into
' i C Register at .pointer position
(LOAD CONSTANT)
0 00)0 1 X Display Teggle
0o 01|60 1 X Exchange Mewory, C*M>C
8 o 10}0 1 X Up Stack, CoCrD+EXF
o 11!0 1 X Down Staclk, FrFoL+D>A
1 00!0 X Display OFF
1 01,0 1 X Recall Memory, HM>C
1 1010 1 X Retate Down, CorF>E+D2C
1 1110 1 X Clear all rugisters 0+A,B,C,D,E,F M
1 Xio 1 1 X . IS + A register (56 bits)
1 X Xll 1 X ECD + C register (56 bits)
20

Page 5 of 7

UNITED STATES PATENT OFFICE
CERTIFICATE OF CORRECTION

Patent No. 3,863,060

Dated

January 28, 1975

Inventor(s)_France Rode et al.

It is certified that error appears in the above-identified patent
and that said Letters Patent are hereby corrected as shown below:

Col. 27,

should appear as follows:

TABI.E OF TYPE SIX INSTRUCTION DECODING

the "TABLE OF TYPE SIX INSTRUCTION DECODING"

Circuit
Alccted IQIBXTIF-I:~I413I2111° Instruction
0000G10000 ROM select. One of B as specified
ROM l ool1o0000 in bies 19 - 17.
11100{t0000
CsT Xxxjo1l1000¢ Subroutine return
XXxt010(20000 External key code catry to CAT
XX1110{10000 Keyboard entry
e [1Afo 1 1fio 000 | s B T € Besteer 5o
1e¢l111100o00 Send data fren € llr.ri ter into Data
Stovage Circult
Col. 30, lines 25-26, "instruction" should read -- to --:
Col. 33-34, the right-hand column of the ROM 0 listing
at line 132 should read -- IF A > = B[X] --;
Col. 35-36, at line 242 of the ROM 0 listing, delete
"L0363:";
Col. 35-36, at line 243 of the ROM 0 listing, "I0363:"
should read -- L0363: —--; '
Col. 41-42, at line 242 of the ROM 1 listing, "JSB ROTL"

should read -- JSB ROT1 --;

UNITED STATES PATENT OFFICE
CERTIFICATE OF CORRECTION

Patent No. 3,863,060 Dated

Inventor(s) France Rode et al.

Page 6 of 7

January 28, 1975

It is certified that error appears in the above-identified patent
and that said Letters Patent are hereby corrected as shown below:

Col. 49-50, at line 53 of the ROM 3 listing, "111.1.11."

should read -- 111.1.111. -—-;

Col. 57-58 of the ROM 4 listing,

read line number -- 230 --;

line number "130" should

Col. 65-66, at line 50 of the ROM 6 listing, "-L6065"

should read -—— 16064 -—;

Col. 67-68, at line 164 of the
should read -- .111..11l.. --;:

Col. 67-68, at line 170 of the
should read -- IF A>=C[MS] --;

Col. 69-70, at line 206 of the
should read -- 1.6316: --:

Col. 69-70, at line 214 of the
should read -- 11111..11. --;

Col. 69-70, at line 216 of the
should read —-- 0->C[W] --;

Col. 69-70, at line 224 of the
should read -- 11.111.11 --;

ROM

ROM

ROM

ROM

ROM

ROM

6 listing,

6 listing,

6 listing,

6 listing,

6 listing,

6 listing,

".111..11..."

"IF A>=C[M}"

"L6l36:"

"1111..1t."

HO C[W] n

"11.111.111."

Page 7 of 7
UNITED STATES PATENT OFFICE

CERTIFICATE OF CORRECTION

Patent No. 3,863,060 Dated January 28, 1975

Inventor(s) France Rode et al.

It is certified that error appears in the above-identified patent
and that said Letters Patent are hereby corrected as shown below:

Col. 69-70, at line 239 of the ROM 6 listing, "O*C[]"

should read -- O0*C[X] ~--; and
Col. 69, line 58, between "1.3" and "=" insert -- i --.
Signed and Sealed this
thirteenth Day of aprit 1976
[SEAL]
Attest:
RUTH C. MASON C.MARSHALL DANN

Attesting Officer Commissioner of Patents and Trademarks

