oNP1E-H

AQSEFRINR MESCRIPPION AND USER'S GUIDE

By

. 4 e
feonardo A. Uzecategul

“he University of Michirsun
Anr Arbors Vichigan

4 September 1973

TARLE OF CONTENTS

R 4

é‘%‘“‘ I?:TQC”L‘CTIO?‘DO0.0IlQ..I\IIEOQCQCG0.00QQOOQOQCOQQ.'9.‘

2 ESIENPETER STATEVENTS POPMAT . .t cveionsscosivsecrsossa
2“1 7"."91! Fieldllﬁ0.0QO.Q...6.."'.;..‘.0'0..
2.2 Oneration fnde Fleld..veenceccossosncence
?-E Cnarand ?ieldnooon‘0.!.‘0...0..'0.0..0.“
2-‘ Con”‘!er’!ts Field....'l.".....'...O'.G0.0‘O

::;- “7)'016 " Ii{gﬂa"CmO"‘ mv.-‘.J‘..l..b..l'.'..0.'.0'1'9.!.
1.1 Reeriater Trargfer Instrvctions....g..s...
4.2 UncorAdition2al 3ranch Tretrictionececeseeces
3.3 Conditional 3Aranch Inetriction.ecceccceccess
3.4 Subroutire Linkare InatructionS.c.ccscecses

i’['l Agﬁ!““‘,“gL‘:“‘p ﬁﬁ—‘“no Ihgm?L"(‘rxor‘".l'.‘.‘O.C.I.'.O.'.IG'
i, Zanate 3Ivmrol Tseudo Instrretion..ceeseces
i, Ronama Recietar Tgeuds Tnstruction.eceeces
i, Indentifv Amseamhle Ligtins Tseudo

i
2
3

InstructioN.ecscecnaassvecaccosscssseansnsns
L Start "ew Pace Teaydo ITnstrictioNceececes
5 Swace Tigtine Pgseudo Instrictioneceesceess
t.6 3Jeot Tocation Counter Tseudo Instruction..
7?7 2Znd Assemblv Fseudo Instructione:eccecvoee
F

(
PEEE

» L4 0 *

G ASSEYBY

”

q DIACEECSTICSOQl:......‘........o-"0.90.'70.‘

éﬂ GBJECT !‘ODULE -Al‘m LISTII:G..........‘.....C’....'.'."

!?‘ RUVI"I!!G NPP]IRC!\"‘E’IT."'|l....'0'-ﬁ..ﬂﬂ.ﬁﬂ‘.COCOOOOQOU

Ymog”

A S

WV -

M W

NDWDDV~F G O

10
12
12

P

i fwtroduction

wha vpurvose of this document is to describe the assembler .

1unouare for the PDP16-M. The reader is assumed to be familiar
with the PNP16-M as described in the PDélé-WAUsér‘s Guide
sublication of Digital, Equipment Corvoration (DEC) form number -
N el 6-TMIGA-A-D first edifion of Varch 1973.

mhe ©DP16-M assembler is a orogram written to translate
symbolic vrograms for the PDP16-M into hexa&ecimal vinary
orosrams. ‘These binary vprograms can be "written” into
electrically Erpzrammable Read Only Memories (prCM*'s) for
execution on the PNP16-M. &ach Pi0M contains 256 addressable
2.hit storare locations and is hcused in a 24-pin dual-in-line
repramic vackace. With this in mind, binary prosrams vroduced
bv the assembler can be “writter™ into the PROM's using the -
vichiean Intel MCS-8 Proeramming and Loading (MIM/PL) routines.
These routines are described in a different document and
information about about them can pe obtain from Professors

©. E. Atkins and K. B. Iranl of the Systens Engineering

iavoratory of the University o Michigan.

2. Assembler Statements Format

rach assembler statement uAy consist of up to four flelds:
1insel field, overation code fisld, operand field, and comments
7is1d. If all fields avpear in one statement, they must be in

that order. The only delimiter between fileds is at least one

P

QR e

. blank. Therefore, the format is variable with the exception
of the label field which must be in column one if present.

2.1 Tabel Field

"he label field consist of up to elght characters, the
first of which must be alvhabetic (A-Z); the remaining seven
characters may be alnh;betic or numeric (049). It is usged to
identify a narticuiar statement with a symbolic ﬁame given by
the voroerammer. This field, if oresent, must begin in column
one. Examnles of labels are: ADD, gUM2, FIMISH, LOOP. The

1ahel fielAd i= owntional.

2.7 Oneration Code Field

The overation code field may consist of alphabetic, numeric.
or swecial characters, devendine umon which instruction is
riven., It may consist of all the PDP16-M instructions as
described in DEC's vpublication (with a few exceptions which
srs indicated in later descriptiong) or all the assembler
ssaudo instructions (see Sec. 5.). Examples ares: A=A+1, EXA,
p=A.AND.B, TITLE, END, SPACE, IF(A1>). The overation code
¥32141 is mandatory.

.3 Omerand Field

The overand field may consist of symbols as described in
+ie label field or svecial numerics (see Sec. 4.1) or register
qumes (see Sec. 4.2) or strings of characters (aee:Sec. L.3).

some instructions do not require an operand field and
+herefore it is omitted. Examoles ares 0°200°, D*'920°, A®®°,

START, A, A TITLE.

2.4 Comments Field

The comments field is ovotional and may follow the owerand

field or the omeration code field. It may consist of any

lepal characters and indicates descrivntive items of informa-
tion for the »rogrammer. A statement can be all comments
hy placine an asterisé in column one.

Examoles:

THIS IS A COMMENT

A=A+l INCREMENT COUNT.

Note: As indicated above, the only delimiter betwesen fields
ié at least one blank. Care must be taken in observing
this convention. Henceforth, in this revort, delimiters
will not be exvlicitly written. However, it is imolied that

there 1g at least one blank between filelds.

. PNP16-¥ Instructicn Tyves

There are four classes of instructions for the PDPi6-k.
Thase are: Register transfer instructions, Unconditional
“ranch instructions, Conditional Branch instructions, and
“ubroutine linkage instructions.

%.. Reeister Transfer Instructions

The register transfer instructions are used to specify

arithmetic, logical, data transfer. I1/C, and control opera-
tiong. The general form of the instructions is:

| register=recigster-operation.
iExamnles of these instructions follow:

A=A+1 (arithmetic grouv)

E

PR

——— 2 > A WA S .

A=A.OR.B logical sroup)

A=TR register rrouv)

B=C1T congtant generation group)”
o ASGPIL) (1/0 grouv)

HALT (command grouv)

3.2 Unconditional Rranch Instruction

The unconditional branch instruction (GOTO) is used
to transfer control from one vart of the prosram to another
{within the same vaze. A page is 512 locations). An example
of this instruction ist B |

- GOTO ADD

@

»

AN A=A4R
The label °ADN' must be in the same vage as the one
in which the GOTO instruction resides.

4.3 \Cdnditional Branch Instruction

The conditional branch instruction (IF) is used to trans-
iy control conditionally from one vart of the program tb
arother (in the same vage). ‘

There are twenty-one hardwired conditions. That can
be tested in the PHP16-M (an additionafhthirty-six.conditions
¢an be obtained with some hardware optional features).

The general form of the conditional branch instruction
X .

IF(condition) labvel

Examoles of this instruction are:

. IF(DP) SUB

@

@

SUB A=A-1

O e g

RSN g v

ere control is transfered to the statement labeled SUB
@miy if the dats word is positive. Note that the label must
be in the szme vage.

IF(A{157) ENDUP.

L]
-

’

“NDUP HALT
‘n this case, control is given to the statement labeled
ENNUP if bit 15 of register a is set.

5.4 Subroutine Linkage Instructions

The subroutine linkage instiructions are used to transfer
sontrol to a subroutine (CALL) »r to return control from a
sutroutine to the main wnrogram or to another subroutine'(EKIT).
l1sre, azain, the subroutine to which control is transfered must
te within the same vage. An examnle of the use‘cf these
instructionsg iss

>

CALL ADD

®

z

ADD A=A+B
B=R+1
EXIT | |
when control reachea the CALL instruction, it is given
16 the statement labeled ADD. The instructions A=A+B and
f=1+41 are then executed and when the EXIT instruction is
wa~formed, control is transfered to ths instruction following

tha. CALL instruction.

SRR

4. Assembler ®geudo Ingtructions

Besides the basic PDP16-M, there are several assembler
pseudo instructions to enhance the readability of the vrogram
1istinr, and to allow the nroprahmer to équate symbols and
nredefined recisters to more easily remembered names. The

asaembler nseudo inatructions imvlemented so far sres

wnu - enuate .symhol -

NTNAWE - rename oredefined recister

PITLE - identifv sssembly listins

LIRAM « start 2 new vare in the ligtine
39ANT < gnace listine

0rRe - et the location counter

=ND - end assembly

B.1 Favate Symbol Pseude Instruction (ZOU)

The TN nasudo instruction is used to define a svmbol'
hw assienine to it a value the oroerammer needs. The general
form of thias nseudo ingtruction is: |

1abel €91 omerand
The label is any legal symbol for the label field of an
‘atatement (see Sec. 2.1). The onerand field can be any of
three tyves: .

0'n' where n is any octal number from 0 to 1777

A'c® where ¢ is anv legal ascii character

7'm* where m is any (sirned/unsigned) decimal number

from =1022 to 1023

¥xamoles of the use of this nseudo instruction ares
’ »
RUBOUT EQU 0'377' to refer to 0°'377°' symbolically
BLANK EQU A" ° to refer to A' * symbolically.
MINUS! EQU D'-1°*' to refer to D'-1° gsymbolically

.2+ Rename Rerister Pssudo Instruction (RENAVE)

The RENAME pseudo instruction is used to allow the name

o T T A — 4 ¢ o S—— o —

— L an . AR

e o

wr ©0f nredefined registers to become synonymous with names given
bv the wrogrammer to increase program readability and ease of
airorithm imnlementation. The general form of the RENAME
naeude instruction iss | .
label RENAYEZ onergnd-revister .
The label is any legal symbol for the label field of an
atatement (see Sec. 2.1). The overand-recister can be any
of the rredefined registers that'take vart in any of the
resister transfer instructlions (see Sec. 3.1).. Examples of
the use of this vseudo instruction sres

SOUNT 2ENAME A
NATA RENAME B

Tn this wayv, COUNT and A are synonymous as well as DATA and B.

Tt is the equivalent to write:

-
A=A+
or COUNT=COUNT+1
or COUNT=A+1
or =COUNT+1
Also for A=A+R the vrogrammer could write A=A+DATA or all
noasible combinations.
4.3 Tdentify Assembly Listing Pseudo Ingtruction (TITIE) .
The TITLE pseudo inatruction ig used, as its name indicates,
o identify the assembly llsting with a title whieh is printed
P the ton of every oage of the vrogram liating. The general
sorm of the TITLE pseudo instruction is: ‘
TITLE overand
the ovnerand fleld can be any string of characters that fits
. iq one card image (the remaining spaces after the TITLE

sastruction is written). This string of charactars'wili be

printed at the tovo of every page of the listing. An example

of the use of this vseudo instruction is:

TITLE TELETYPE READER/WRITER ROUTINE

As a result, the character string TELETYPE READER/WRITER ROUTINE

is printed at the tovn of every oage of the vrogram listine.

%.4 Start New Page Pseudo Instruction (EJECT)

The EJECT pseudo ‘instruction is used to atart a new
nace in the listines of the assembled vrogram. The géneral
form of the EJECT pseudoﬁinstructiCn is:

EJECT |
As aresult, the next line in the listing will bs nrinted at
the tov of a new vare in the vrogram listing. This vwseudo
instruction ig useful for sevarating routines in the listine.

4.5 <nace Listing Pseudy Instruction (SPACE)

The Svace vseudo instruction is used to insert one or
more blank Yines in the assembly listing. The general form
of the SPACE nseudo instruction iss

SPACE overand
The operand may be blank or an unsigned decimal number from
L v 9. This allows a maximum of nine blank lines to be inserted
in the assembly listing. An example:s S

5PACE 3
As a result, three blank lines are inserted ih the assembly
lis%ing at the place where the SPACE pvseudo instruction was
written.

4.5 _Set Location Counter Pseudo_ Instruction (ORG)

The ORG.pseudo instruction is used to set the location

Y

e R R A UYL as

S T R
o Bed TERE w e B

R R W
- W . . etrR ol sk L A amat it Sl . a

W Ctunter to a value defined by the programmer. The general form

of the ORG mnseudo instruction is:

ORG overand
Tre overand is defined as in the EQU pseudo instruction
described in Sec. 4.1. An examole of the use of this pseudo
instruction is3 '

ORG 0'200°

This nseudo instruction will set the location counter to a

wvalue of 200 octal.
It is imvortant to note htat this pseudo instruction

has no relocatable effect whatsoever. Namely, no information

iz kent in the object module about any of the ORG's pgsudo

jnstructions issued. As a result, all the modules wmroduced

- v the assembler are absolute. (the PDP16-M is not a relocatable

machine)

This vseudo instruction is usefpl for writing vage
linkage code (seeSec. 4.5.2 in DEC's oublication) or if the
nrogrammer knows a oriori where his/her vrogram wili(hé loaded,
he/she can vreset the location to to the loading addresss.

4.7 End Assembly Pseudo Instruction (END)

The END pseudo instruction is used to indicate the
piiveical end of the program. It terminatsg the current assembly.

Tha general form of the END pseudo instruction is:

END

As a result, the assembly is terminated, the object code produced

snd the listine and cross reference table is printed.

Y LS - o0

- 10 -

5. Assembler Diagnostics B

The assembler continually checks every statement to

de termine whether it is valid or not. In case an error
condition arises, an error message isAwflttén after the
statement in error. Tﬁe messages are mostly self-exnlanatory.
A brief description of each of them foliows,

*### ODERAND TY?E IS NOT LEGAL.
This messagre is given whenaver the'onerand tyve is not either
octal, decimal, or ascii. |

##%# OPERAND DELIMITER IS MISSING: :
This messare is gilven whenever one or both orimes that delimit
the owerand 1s/hre‘missing. ' . |

##% OPERAND VALUZ IS 70O BIG.
This megsace is given whenever the value of fhe opefand is
grenter than 1777 octal or 1023 decimél.

*#%# OPERAND I3 UNDEFINED, ,
This message is given whenever a label used as an operand
has not been yet defined. ~

=#% TLLECAL BRANCH ADDRESS.
This messase is given whenever the branch address is noti in
the same paée'iﬁ'which the branch instruction ocurred.

#¥## TABEL IS MISSING.
This messace 1s given whenever an instruction which requires

QK

a label does not have 6ne. Examnle: EQU.

(;g_f?.y-

a#u% TLLEGAL USE OF A LABEL.
mhis message 18 given whenever an instruction which~should
w3

_
-*

i

. 2

Y

not have a label has one. Examole: TITLE, ORG.

¥#% TABEI. IS PREVIOUSLY DEFINED.
This messace is given whenever a label is multinly defined.
“his is the case when two different statements are identified
with the same label. ’

#%# TLLEGAL iABEL.
This messaee is given whgnever a label has characters §ther
ihan alohabetic or numeric, or it does not begin with an
zlnhabetic one.

UNDEFINED OPERATION CODE.
This messase 18 riven whenever a statément has an operation
code vhich is not either a PDP16NM instructibn or an'assembler
nsaudo instruetion.

##& UNDECODARLE LINE,
This messare is siven whenever the assembler cannot 1nterpret
an inout statement as a lezal one. This usually hanoens
“hen the atatement is so wroneg that it is almost imnosaible
thnt it could be a lesal statement. ‘

Note: Several additional hardware features may be added

%o the Basic PDP16-M configuration. Any statement that

containg any instruction not availab{e in this basic_¢dhfige
uration will bve flégggd in the assembly listing with an

gsterisk in column one of ‘the listing. This does not canstitute
an error and software suvvort is provided to cancel some

of these flaes as additional hardware is acquired.

-4, Object Module and Tisting

is indicated in Section 1, the PDP16-M assembler vroduces
obiect modules which are comvatible with the ones oroduced

ov the Michiean Intel MCS-8 Assembler (MIM/AL). ‘Thess object

modules ere normally oroduced in the form of a vaper tape.

W . st

This paver tape can then be loaded -into the INTEL MCS-8

Svstem using the MIM/PL routines, and then electrically
nyritten® into the TROM'S, from which instructions will
be fetched and executed by the oroeram control sequences
of the TDP16-M, '

The record format in the object module is variable
lensth format with the first byte of each record being a
w count byte, followed by the data bytes. Each object module
ts vreceded and followed by "leader code"(octal 200} to
eanily sevarate modules.

A listing of the program is vroduced with each‘assembly.
mnhis listing consists of a.title ﬁage'with the model number,
svstem, date and time of the run, followed by the listing
of the program which in turn ig followed by a cross-reference
inble for ease in debugging and to identify all the symbols

used in the program. .

%. Hunning Enviigpment

. The PDP16-M assembler is written to run under the Michigan
werminal System (MTS) and should not be attemnted to run

urder other systems.

The assembler resides in object form in the file SDG6:

oNP16M/AS.
Usage: ‘The assembler is invoked by the 3RUN command.

fogical T/0 units referenced:

L

SCARDS~--The source nrooram to be assembled.
gwRCOM--Asgembler dincnostics.
aPRINT=-=-Tigtines and cross-reference table.
SPIINAH==The resultine object module.
Agsemhler options: The vrogrammer may snecify the follow-
ine ontions, sevarated by one comma, in the PAR= field of
the 4Oy <NR6(TNP16M/AS command. The ertries may aovear
tn anv order, ard, if any ara misasins, a estandard default
will he asmmed. ¥Yollrwing each varamater in the 1i9€_be!ow
se an abhreviated form for the ontion. The default form

0 ench ontion i= underlined. If anv of the entries is not

n imoal one, the umar will he nromnted for the leral entrv

{74 in m~emvergational mrode).

RELUa () . The aassembler nrosegaes @ atyean of acgemblies,
the laat one heine terminstaed with an end-nf-Tile.

w%%qug. (rn) After wrocessinc one assembly, the assembler

T returns to the calling vrogram. -

[EAN.S (") The object module is vroduced and written

e ort SPUNCH. . .

NIROK (ND) The object module is not written on SPUNCH.

11 ¥EONT=nn (1C=n) This svecifiea the number of lires to be
- printed between the headings in the source
1jetine. The limits are 17 to 255. The

default is 55.

Sy7R=m (3=n) This snecifies the number of virtugl K-bytes
(1x=1024)

is 8.

+o he used for assembling the source
orozram. The limits are 1 to 255, The default

—

] BRI TR 7 T

T TR IR T P VP S Y B

W — S .
S e el ool et

e R Y SR
SEE el L

- ol

- AVPENDIX A
Compatibility with the PAL16 Assembler

This appendix describes the differences begwqen.the
instruction formats for the PALL16 Agsembler and the PDP16-M

Ausembler as desecribed in this report. The reader is referred
%0 DEC's publication DEC-IMUGA-A-D.

A.1 _Comments

‘'he PAL16 Assembler uses the slash (/) to denote a
comment follow as ins o |
/ THIS IS AN EXAMPLE OF A COMMENTS LINE
A=ROM /FETCH CODE

OR

Comments in the PDP16-M Assembler are indicated by an asterisk
w ("} in column one when the entire line is & comment. Por
comments on instructions {(as in example 2 above), there is
no special charaétor to denote them. The two examples given
above would read: |
o THIS IS AN EXAMPLE OF A COMMENTS LINE
" - A=ROM FETCH CODE

éﬁgm_Arithmégic Group
The PAL16 Assembler uses the 1ettar'xxznt0¢dongteithe

s»ithmetic operator *times’ as for eiamploa A=AX2. In the
PDP16-M Assembler the aateriek (*)::1s used instead. for

gxamples A=A%2

W

A

- A3 _logical Group

Iin the PAL1S Assembler, the logieal connsctives are
not delimited in any way from their opsrands. This would
cause considerable problems in "parsing™ the operands in
the PDP16-M Assembler bscause of the programmer's ability
€c rename the operands. For this resason, it was decided
tc denote the loglical pperltcfs in the same way FQRTRAN.
denotes them, i.e. by praceding and following them with
a period. Examples follow: |

A=A.NOT. |

A XOR.B

A=A.AND.B (in the PAL16, this is written A=AB)
A=A.0OR.B

A.4 Conditional Jump Group

The IF instruction in the PAL16 Assembler is wtitien
oy following the word "IP" by at least ons blank, then the
ecndition and a comma indicates the end of the conditien
giring. An example 1ss IPF OVF,latel.. In the PDPL6~M

Ansembler this same instruction is written as: iF(QVR)nlnhal.
Noie that there must be at lesast ons blank betwean the second

parenthesis and the label name. Hawcvor, no hlanx may:-
aopear between the word “IP" and the firat parcntaasis.

b A R, L P S RPN R T I IR

P PP PN o

